Examples
Example, 2 Important
Example, 3
Example, 4 Important
Example, 5 Important
Example, 6 Important
Example, 7
Example 8 Important
Example 9
Example 10 Important
Question 1
Question 2
Question 3 Important
Question 4
Question 5
Question 6 Important
Question 7
Question 8
Question 9 Important
Question 10 Important
Question 11 Important
Question 12
Question 13 Important
Question 14
Question 15 Important
Question 16 You are here
Question 17 Important
Question 18 Important
Question 19 Important
Question 20 Important
Last updated at April 16, 2024 by Teachoo
Question 16 A line makes angles 𝛼, 𝛽 , 𝛾 and 𝛿 with the diagonals of a cube, prove that cos2 𝛼 + cos2𝛽 + cos2 𝛼 + cos2𝛾 = 43 Let the side of a cube be ‘a’ Vertices of the cube are ABCDEFOG as shown. Consider a line OP , P having the coordinate (x1, y1, z1) Let OP make angles 𝛼, 𝛽 , 𝛾 and 𝛿 with diagonals OE, AF, CD and BG respectively. Finding lines OE, AF, CD and BG first. Now, Angle between 𝑂𝑃 and 𝑂𝐸 is given by cos 𝛼 = 𝑂𝑃. 𝑂𝐸 𝑂𝑃 𝑂𝐸 𝑂𝑃. 𝑂𝐸 = (x1 𝑖 + y1 𝑗 + z1 𝑘) . (𝑎 𝑖 + 𝑎 𝑗 + 𝑎 𝑘) = ( 𝑥1× 𝑎) + (𝑦1 × 𝑎) + (𝑧1 × 𝑎) = 𝑎x1 + ay1 + az1 Magnitude of 𝑂𝑃 = 𝑥12+ 𝑦12+ 𝑧12 𝑂𝑃 = 𝑥12+ 𝑦12+ 𝑧12 Magnitude of 𝑂𝐸 = 𝑎2+𝑎2+𝑎2 𝑂𝐸 = 3𝑎2 = 3𝑎 So, cos α = 𝑎𝑥1 + 𝑎𝑦1 + 𝑎𝑧1 𝑥12 + 𝑦12 + 𝑧12 × 3𝑎 = 𝑎(𝑥1 + 𝑦1 + 𝑧1) 𝑥12 + 𝑦12 + 𝑧12 × 3𝑎 = (𝒙𝟏+𝒚𝟏 + 𝒛𝟏) 𝟑 𝒙𝟏𝟐 + 𝒚𝟏𝟐 + 𝒛𝟏𝟐 Angle between 𝑂𝑃 and 𝐴𝐹 is given by cos 𝛽 = 𝑂𝑃. 𝐴𝐹 𝑂𝑃 𝐴𝐹 𝑂𝑃. 𝐴𝐹 = (x1 𝑖 + y1 𝑗 + z1 𝑘).(−𝑎 𝑖 + 𝑎 𝑗 + 𝑎 𝑘) = (x1× –𝑎) + (y1 × 𝑎) + (z1 × 𝑎) = –𝑎x1 + ay1 + az1 Magnitude of 𝑂𝑃 = 𝑂𝑃 = 𝑥12+ 𝑦12+𝑧12 Magnitude of 𝐴𝐹 = −𝑎2+𝑎2+𝑎2 𝐴𝐹 = 𝑎2+𝑎2+𝑎2 = 3𝑎2 = 3𝑎 So, cos 𝜷 = 𝑎(−𝑥1+ 𝑦1 + 𝑧1) 𝑥12 + 𝑦12 + 𝑧12 × 3𝑎 = −𝒙𝟏+ 𝒚𝟏 + 𝒛𝟏 𝟑 𝒙𝟏𝟐 + 𝒚𝟏𝟐 + 𝒛𝟏𝟐 Angle between 𝑂𝑃 and 𝐶𝐷 is given by cos 𝛾 = 𝑂𝑃. 𝐶𝐷 𝑂𝑃 𝐶𝐷 𝑂𝑃. 𝐶𝐷 = (x1 𝑖 + y1 𝑗 + z1 𝑘).(𝑎 𝑖 + 𝑎 𝑗 – 𝑎 𝑘) = (x1× 𝑎) + (y1 × 𝑎) + (z1 × –𝑎) = 𝑎x1 + ay1 – az1 Magnitude of 𝑂𝑃 = 𝑂𝑃 = 𝑥12+ 𝑦12+𝑧12 Magnitude of 𝐶𝐷 = 𝑎2+𝑎2+ −𝑎2 𝐶𝐷 = 𝑎2+𝑎2+𝑎2 = 3𝑎2 = 3𝑎 So, cos 𝜸 = 𝑎(𝑥1+ 𝑦1 − 𝑧1) 𝑥12 + 𝑦12 + 𝑧12 × 3𝑎 = 𝒙𝟏+ 𝒚𝟏 − 𝒛𝟏 𝟑 𝒙𝟏𝟐 + 𝒚𝟏𝟐 + 𝒛𝟏𝟐 Angle between 𝑂𝑃 and 𝐵𝐺 is given by cos 𝛿 = 𝑂𝑃. 𝐵𝐺 𝑂𝑃 𝐵𝐺 𝑂𝑃. 𝐵𝐺 = (x1 𝑖 + y1 𝑗 + z1 𝑘).(𝑎 𝑖 – 𝑎 𝑗 + 𝑎 𝑘) = (x1× 𝑎) + (y1 × –𝑎) + (z1 × 𝑎) = 𝑎x1 – ay1 + az1 Magnitude of 𝑂𝑃 = 𝑂𝑃 = 𝑥12+ 𝑦12+𝑧12 Magnitude of 𝐵𝐺 = 𝑎2+ −𝑎2+𝑎2 𝐵𝐺 = 𝑎2+𝑎2+𝑎2 = 3𝑎2 = 3𝑎 So, cos 𝜹 = 𝑎(𝑥1− 𝑦1 + 𝑧1) 𝑥12 + 𝑦12 + 𝑧12 × 3𝑎 = 𝒙𝟏 − 𝒚𝟏 + 𝒛𝟏 𝟑 𝒙𝟏𝟐 + 𝒚𝟏𝟐 + 𝒛𝟏𝟐 Now, cos2 𝜶 + cos2𝜷 + cos2 𝜸 + cos2 𝜹 = 𝑥1 + 𝑦1 + 𝑧1 3 𝑥12 + 𝑦12 + 𝑧122 + − 𝑥1 + 𝑦1 + 𝑧1 3 𝑥12 + 𝑦12 + 𝑧122 + 𝑥1 + 𝑦1 − 𝑧1 3 𝑥12 + 𝑦12 + 𝑧122 + 𝑥1 − 𝑦1 + 𝑧1 3 𝑥12 + 𝑦12 + 𝑧122 = 𝑥1 + 𝑦1 + 𝑧123( 𝑥12 + 𝑦12 + 𝑧12) + − 𝑥1 + 𝑦1 + 𝑧123( 𝑥12 + 𝑦12 + 𝑧12) + 𝑥1 + 𝑦1 − 𝑧123( 𝑥12 + 𝑦12 + 𝑧12) + 𝑥1 − 𝑦1 + 𝑧123( 𝑥12 + 𝑦12 + 𝑧12) = 𝑥1 + 𝑦1 + 𝑧12 + −𝑥1 + 𝑦1+ 𝑧12 + 𝑥1 + 𝑦1 − 𝑧12 + 𝑥1 − 𝑦1 + 𝑧123( 𝑥12 + 𝑦12 + 𝑧12) = 𝑥12 + 𝑦12 + 𝑧12 + 2 𝑥1 𝑦1+ 2 𝑥1 𝑧1+ 2 𝑦1 𝑧1 + 𝑥12 + 𝑦12 + 𝑧12 − 2 𝑥1 𝑦1 − 2 𝑥1 𝑧1+ 2 𝑦1 𝑧1+ 𝑥12 + 𝑦12 + 𝑧12+ 2 𝑥1 𝑦1 − 2 𝑥1 𝑧1 − 2 𝑦1 𝑧1+ 𝑥12 + 𝑦12 + 𝑧12 − 2 𝑥1 𝑦1 + 2 𝑥1 𝑧1 − 2 𝑦1 𝑧13( 𝑥12 + 𝑦12 + 𝑧12) = 4 𝑥12 + 4 𝑦12 + 4 𝑧123( 𝑥12 + 𝑦12 + 𝑧12) = 4( 𝑥12 + 𝑦12 + 𝑧12)3( 𝑥12 + 𝑦12 + 𝑧12) = 43 ∴ cos2𝜶 + cos2𝜷 + cos2𝜸 + cos2𝜹 = 𝟒𝟑