Chapter 11 Class 12 Three Dimensional Geometry
Ex 11.1, 2
Example, 6 Important
Example, 7
Example 10 Important
Ex 11.2, 5 Important
Ex 11.2, 9 (i) Important
Ex 11.2, 10 Important
Ex 11.2, 12 Important
Ex 11.2, 13 Important
Ex 11.2, 15 Important
Question 10 Important
Question 11 Important You are here
Question 13 Important
Question 14
Question 15 Important
Question 4 (a) Important
Question 11 Important You are here
Question 12 Important
Question 14 (a) Important
Question 17 Important
Question 19 Important
Question 20 Important
Misc 3 Important
Misc 4 Important
Question 10 Important
Question 14 Important
Misc 5 Important
Question 16 Important
Chapter 11 Class 12 Three Dimensional Geometry
Last updated at April 16, 2024 by Teachoo
Question 11 Show that the lines (๐ฅ + 3)/( โ3) = (๐ฆ โ 1)/1 = (๐ง โ 5)/5 and (๐ฅ + 1)/( โ1) = (๐ฆ โ 2)/2 = (๐ง โ 5)/5 are coplanar. Two lines (๐ฅ โ ๐ฅ_1)/๐_1 = (๐ฆ โ ๐ฆ_1)/๐_1 = (๐ง โ ๐ง_1)/๐_1 and (๐ฅ โ ๐ฅ_2)/๐_2 = (๐ฆ โ ๐ฆ_2)/๐_2 = (๐ง โ ๐ง_2)/๐_2 are coplanar if |โ 8(๐_๐โ๐_๐&๐_๐โ๐_๐&๐_๐โ๐_๐@๐_๐&๐_๐&๐_๐@๐_๐&๐_๐&๐_๐ )| = 0 Given, the two lines are Given, (๐ + ๐)/( โ ๐) = (๐ โ ๐)/๐ = (๐ โ ๐)/๐ (๐ฅ โ(โ3))/( โ 3) = (๐ฆ โ1)/1 = (๐งโ 5)/5 Comparing (๐ฅ โ ๐ฅ_1)/๐_1 = (๐ฆ โ ๐ฆ_1)/๐_1 = (๐ง โ ๐ง_1)/๐_1 ๐ฅ_1 = โ3, ๐ฆ_1 = 1, ๐ง_1= 5 & ๐_1 = โ3, ๐_1 = 1, ๐_1= 5 Given, (๐ + ๐)/( โ ๐) = (๐ โ ๐)/๐ = (๐ โ ๐)/๐ (๐ฅ โ (โ1))/( โ 1) = (๐ฆ โ 2)/2 = (๐ง โ 5)/5 Comparing (๐ฅ โ ๐ฅ_2)/๐_2 = (๐ฆ โ ๐ฆ_2)/๐_2 = (๐ง โ ๐ง_2)/๐_2 ๐ฅ_2 = โ1, ๐ฆ_2 = 2, ๐ง_2= 5 & ๐_2 = โ1, ๐_2 = 2, ๐_2= 5 Now, |โ 8(๐ฅ_2โ๐ฅ_1&๐ฆ_2โ๐ฆ_1&๐ง_2โ๐ง_1@๐_1&๐_1&๐_1@๐_2&๐_2&๐_2 )| `= |โ 8( โ1โ(โ3)&2โ1&5โ5@ โ3&1&5@ โ1&2&5)| = |โ 8(2&1&0@โ3&1&5@โ1&2&5)| = 2[(1ร5)โ(2ร5)] โ 1[(โ3ร5)โ(โ 1ร5)] + 0 [(โ3ร2)โ(โ1ร1)] = 2[5โ10]โ 1[โ 15โ(โ 5)] + 0 = 2(โ5) โ1(โ10) = โ10 + 10 = 0 Therefore, the given two lines are coplanar.