Chapter 11 Class 12 Three Dimensional Geometry
Ex 11.1, 2
Example, 6 Important
Example, 7
Example 10 Important
Ex 11.2, 5 Important
Ex 11.2, 9 (i) Important
Ex 11.2, 10 Important
Ex 11.2, 12 Important
Ex 11.2, 13 Important
Ex 11.2, 15 Important
Question 10 Important You are here
Question 11 Important
Question 13 Important
Question 14
Question 15 Important
Question 4 (a) Important
Question 11 Important
Question 12 Important
Question 14 (a) Important
Question 17 Important
Question 19 Important
Question 20 Important
Misc 3 Important
Misc 4 Important
Question 10 Important You are here
Question 14 Important
Misc 5 Important
Question 16 Important
Chapter 11 Class 12 Three Dimensional Geometry
Last updated at Dec. 16, 2024 by Teachoo
Question 10 Find the vector equation of the plane passing through the intersection of the planes ๐ โ . (๐ ฬ + ๐ ฬ + ๐ ฬ) = 6 and ๐ โ . (2๐ ฬ + 3๐ ฬ + 4๐ ฬ) = โ 5, and the point (1, 1, 1).The vector equation of a plane passing through the intersection of planes ๐ โ. (๐1) โ = d1 and ๐ โ. (๐2) โ = d2 and also through the point (x1, y1, z1) is ๐ โ.((๐๐) โ + ๐(๐๐) โ) = d1 + ๐d2 Given, the plane passes through ๐ โ.(๐ ฬ + ๐ ฬ + ๐ ฬ) = 6 Comparing with ๐ โ.(๐1) โ = d1, (๐๐) โ = ๐ ฬ + ๐ ฬ + ๐ ฬ & d1 = 6 ๐ โ.(2๐ ฬ + 3๐ ฬ + 4๐ ฬ) = โ5 โ๐ โ.(2๐ ฬ + 3๐ ฬ + 4๐ ฬ) = 5 ๐ โ .(โ 2๐ ฬ โ 3๐ ฬ โ 4๐ ฬ) = 5 Comparing with ๐ โ.(๐2) โ = d2 (๐๐) โ = โ 2๐ ฬ โ 3๐ ฬ โ 4๐ ฬ & d2 = 5 Equation of plane is ๐ โ. [(๐ ฬ+๐ ฬ+๐ ฬ )+"๐" (โ2๐ ฬโ3๐ ฬโ4๐ ฬ)] = 6 + ๐5 ๐ โ. [(๐ ฬ" " +๐ ฬ" " +๐ ฬ )โ"๐" (๐๐ ฬ+๐๐ ฬ+๐๐ ฬ)] = 6 + 5๐ Now to find ๐ , put ๐ โ = x๐ ฬ + y๐ ฬ + z๐ ฬ (x๐ ฬ + y๐ ฬ + z๐ ฬ). [(๐ ฬ+๐ ฬ+๐ ฬ )โ"๐" (2๐ ฬ+3๐ ฬ+4๐ ฬ)] = 5๐ + 6 (x๐ ฬ + y๐ ฬ + z๐ ฬ).(๐ ฬ+๐ ฬ+๐ ฬ ) โ ๐ (x๐ ฬ + y๐ ฬ + z๐ ฬ).(2๐ ฬ+3๐ ฬ+4๐ ฬ) = 5๐ + 6 (x ร 1) + (y ร 1) + (z ร 1) โ ๐[(๐ฅร2)+(๐ฆร3)+(๐งร4)] = 5๐ + 6 x + y + z โ ๐[2๐ฅ+3๐ฆ+4๐ง] = 5๐ + 6 x + y + z โ 2๐๐ฅ โ 3๐y โ 4๐z = 5๐ + 6 (1 โ 2๐)x + (1 โ 3๐)y + (1 โ 4๐) z = 5๐ + 6 Since the plane passes through (1, 1, 1), Putting (1, 1, 1) in (2) (1 โ 2๐)x + (1 โ 3๐)y + (1 โ 4๐) z = 5๐ + 6 (1 โ2๐) ร 1 + (1 โ 3๐) ร 1 + (1 โ 4๐) ร 1 = 5๐ + 6 1 โ2๐ + 1 โ 3๐ + 1 โ 4๐= 5๐ + 6 3 โ 9๐ = 5๐ + 6 โ14๐ = 3 โด ๐ = (โ๐)/๐๐ Putting value of ๐ in (1), ๐ โ. [(๐ ฬ" " +" " ๐ ฬ" " +" " ๐ ฬ )โ(( โ3)/14)(2๐ ฬ+3๐ ฬ+"4" ๐ ฬ)]= 6 + 5 ร ( โ3)/14 ๐ โ. [(๐ ฬ+๐ ฬ+" " ๐ ฬ )+3/14(2๐ ฬ+3๐ ฬ+"4" ๐ ฬ)]= 6 โ 15/14 ๐ โ. [๐ ฬ+๐ ฬ" " +๐ ฬ+ 6/14 ๐ ฬ+9/14 ๐ ฬ+12/14 ๐ ฬ ]= 69/14 ๐ โ. [(1+6/14) ๐ ฬ +(1+9/14) ๐ ฬ+(1+12/14) ๐ ฬ ]= 69/14 ๐ โ. [20/14 ๐ ฬ + 23/14 ๐ ฬ + 26/14 ๐ ฬ ]= 69/14 ๐ โ. [1/14(20๐ ฬ+23๐ ฬ+26๐ ฬ)]= 69/14 1/14 ๐ โ. (20๐ ฬ + 23๐ ฬ + 26๐ ฬ) = 69/14 ๐ โ. (20๐ ฬ + 23๐ ฬ + 26๐ ฬ) = 69 Therefore, the vector equation of the required plane is ๐ โ.(๐๐๐ ฬ + ๐๐๐ ฬ + ๐๐๐ ฬ) = ๐๐