Examples
Example, 2 Important
Example, 3
Example, 4 Important
Example, 5 Important
Example, 6 Important
Example, 7
Example 8 Important
Example 9
Example 10 Important
Question 1
Question 2
Question 3 Important
Question 4
Question 5 You are here
Question 6 Important
Question 7
Question 8
Question 9 Important
Question 10 Important
Question 11 Important
Question 12
Question 13 Important
Question 14
Question 15 Important
Question 16
Question 17 Important
Question 18 Important
Question 19 Important
Question 20 Important
Last updated at Dec. 16, 2024 by Teachoo
Question 5(Method 1) Find the distance of the plane 2x 3y + 4z 6 = 0 from the origin. Given, the equation of plane is 2x 3y + 4z 6 = 0 2x 3y + 4z = 6 Direction ratios of = , , a = 2, b = 3, c = 4 Also, 2 + 2 + 2 = 2 2 + ( 3) 2 + 4 2 = 4+9+16 = 29 Direction cosines are l = 2 + 2 + 2 , m = 2 + 2 + 2 , n = 2 + 2 + 2 l = 2 29 , m = 3 29 ,n = 4 29 Equation of plane is lx + my + nz = d 2 29 x 3 29 y + 4 29 z = d 2x 3y + 4z = d 29 Comparing with (1) i.e. 2x 3y + 4z = 6, d 29 = 6 d = Question 5(Method 2) Find the distance of the plane 2x 3y + 4z 6 = 0 from the origin. Distance of point P(x1, y1, z1) from plane Ax + By + Cz = D is d = 1 + 1 + 1 2 + 2 + 2 Since we have to find distance from Origin P(x1, y1, z1) = O(0, 0, 0) x1 = 0, y1 = 0, z1 = 0 & plane is 2x 3y + 4z 6 = 0 2x 3y + 4z = 6 Comparing with Ax + By + Cz = D A = 2, B = 3, C = 4 & D = 6 Putting values in formula d = 1 + 1 + 1 2 + 2 + 2 d = 2 0 3 0 + 4 0 6 2 2 + ( 3) 2 + 4 2 d = 6 4 + 9 + 16 d = 6 29 d =