


Chapter 11 Class 12 Three Dimensional Geometry
Chapter 11 Class 12 Three Dimensional Geometry
Last updated at Dec. 16, 2024 by Teachoo
Transcript
Example 10 Find the distance between the lines 𝑙_1 and 𝑙_2 given by 𝑟 ⃗ = 𝑖 ̂ + 2𝑗 ̂ – 4𝑘 ̂ + 𝜆 (2𝒊 ̂ + 3𝒋 ̂ + 6𝒌 ̂ ) and 𝑟 ⃗ = 3𝑖 ̂ + 3𝑗 ̂ − 5𝑘 ̂ + μ (2𝒊 ̂ + 3𝒋 ̂ + 6𝒌 ̂)Distance between two parallel lines with vector equations 𝑟 ⃗ = (𝑎_1 ) ⃗ + 𝜆𝒃 ⃗ and 𝑟 ⃗ = (𝑎_2 ) ⃗ + 𝜇𝒃 ⃗ is |(𝒃 ⃗ × ((𝒂_𝟐 ) ⃗ − (𝒂_𝟏 ) ⃗))/|𝒃 ⃗ | | 𝑟 ⃗ = (𝑖 ̂ + 2𝑗 ̂ − 4𝑘 ̂) + 𝜆 (2𝒊 ̂ + 3𝒋 ̂ + 6𝒌 ̂) Comparing with 𝑟 ⃗ = (𝑎1) ⃗ + 𝜆 𝑏 ⃗, (𝑎1) ⃗ = 1𝑖 ̂ + 2𝑗 ̂ – 4𝑘 ̂ & 𝑏 ⃗ = 2𝑖 ̂ + 3𝑗 ̂ + 6𝑘 ̂ 𝑟 ⃗ = (3𝑖 ̂ + 3𝑗 ̂ − 5𝑘 ̂) + 𝜇 (2𝒊 ̂ + 3𝒋 ̂ + 6𝒌 ̂) Comparing with 𝑟 ⃗ = (𝑎2) ⃗ + 𝜇𝑏 ⃗, (𝑎2) ⃗ = 3𝑖 ̂ + 3𝑗 ̂ − 5𝑘 ̂ & 𝑏 ⃗ = 2𝑖 ̂ + 3𝑗 ̂ + 6𝑘 ̂ Now, ((𝒂𝟐) ⃗ − (𝒂𝟏) ⃗) = (3𝑖 ̂ + 3𝑗 ̂ − 5𝑘 ̂) − (1𝑖 ̂ + 2𝑗 ̂ − 4𝑘 ̂) = (3 − 1) 𝑖 ̂ + (3 − 2)𝑗 ̂ + ( − 5 + 4)𝑘 ̂ = 2𝒊 ̂ + 1𝒋 ̂ − 1𝒌 ̂ Magnitude of 𝑏 ⃗ = √(22 + 32 + 62) |𝒃 ⃗ | = √(4+9+36) = √49 = 7 Also, 𝒃 ⃗ × ((𝒂𝟐) ⃗ − (𝒂𝟏) ⃗) = |■8(𝑖 ̂&𝑗 ̂&𝑘 ̂@2&3&6@2&1&−1)| = 𝑖 ̂ [(3×−1)−(1×6)] − 𝑗 ̂ [(2×−1)−(2×6)] + 𝑘 ̂ [(2×1)−(2×3)] = 𝑖 ̂ [−3−6] − 𝑗 ̂ [−2−12] + 𝑘 ̂ [2−6] = 𝑖 ̂ (–9) − 𝑗 ̂ (–14) + 𝑘 ̂(−4) = −𝟗𝒊 ̂ + 14𝒋 ̂ − 4𝒌 ̂ Now, |𝒃 ⃗" × (" (𝒂𝟐) ⃗" − " (𝒂𝟏) ⃗")" | = √((−9)^2+(14)^2+(−4)^2 ) = √(81+196+16) = √𝟐𝟗𝟑 So, Distance = |(𝑏 ⃗ × ((𝑎_2 ) ⃗ − (𝑎_1 ) ⃗))/|𝑏 ⃗ | | = |√293/7| = √𝟐𝟗𝟑/𝟕 Therefore, the distance between the given two parallel lines is √293/7.