Examples
Example, 2 Important
Example, 3
Example, 4 Important
Example, 5 Important
Example, 6 Important
Example, 7
Example 8 Important You are here
Example 9
Example 10 Important
Question 1
Question 2
Question 3 Important
Question 4
Question 5
Question 6 Important
Question 7
Question 8
Question 9 Important
Question 10 Important
Question 11 Important
Question 12
Question 13 Important
Question 14
Question 15 Important
Question 16
Question 17 Important
Question 18 Important
Question 19 Important
Question 20 Important
Last updated at April 16, 2024 by Teachoo
Example 8 Find the angle between the pair of lines (𝑥 + 3)/3 = (𝑦 − 1)/5 = (𝑧 + 3)/4 and (𝑥 + 1)/1 = (𝑦 − 4)/1 = (𝑧 − 5)/2 Angle between the pair of lines (𝑥 − 𝑥1)/𝑎1 = (𝑦 − 𝑦1)/𝑏1 = (𝑧 − 𝑧1)/𝑐1 and (𝑥 − 𝑥2)/𝑎2 = (𝑦 − 𝑦2)/𝑏2 = (𝑧 − 𝑧2)/𝑐2 is given by cos θ = |(𝒂_𝟏 𝒂_𝟐 + 𝒃_𝟏 𝒃_𝟐 +〖 𝒄〗_𝟏 𝒄_𝟐)/(√(〖𝒂_𝟏〗^𝟐 + 〖𝒃_𝟏〗^𝟐+ 〖𝒄_𝟏〗^𝟐 ) √(〖𝒂_𝟐〗^𝟐 +〖〖 𝒃〗_𝟐〗^𝟐+ 〖𝒄_𝟐〗^𝟐 ))| (𝒙 + 𝟑)/𝟑 = (𝒚 − 𝟏)/𝟓 = (𝒛 + 𝟑)/𝟒 (𝑥 − (−3))/3 = (𝑦 − 1)/5 = (𝑧 − (−3))/4 Comparing with (𝑥 − 𝑥1)/𝑎1 = (𝑦 − 𝑦1)/𝑏1 = (𝑧 − 𝑧1)/𝑐1 x1 = −3, y1 = 1, z1 = –3 & 𝒂1 = 3, b1 = 5, c1 = 4 (𝒙 + 𝟏)/𝟏 = (𝒚 − 𝟒)/𝟏 = (𝒛 − 𝟓)/𝟐 (𝑥 − (−1))/1 = (𝑦 − 4)/1 = (𝑧 − 5)/2 Comparing with (𝑥 − 𝑥2)/𝑎2 = (𝑦 − 𝑦2)/𝑏2 = (𝑧 − 𝑧2)/𝑐2 𝑥2 = −1, y2 = 4, z2 = 5 & 𝒂2 = 1, 𝒃2 = 1, 𝒄2 = 2 Now, cos θ = |(𝑎_1 𝑎_2 + 𝑏_1 𝑏_2 +〖 𝑐〗_1 𝑐_2)/(√(〖𝑎_1〗^2 + 〖𝑏_1〗^2+ 〖𝑐_1〗^2 ) √(〖𝑎_2〗^2 +〖〖 𝑏〗_2〗^2+ 〖𝑐_2〗^2 ))| = |((𝟑 × 𝟏) + (𝟓 × 𝟏) + (𝟒 × 𝟐))/(√(𝟑^𝟐 + 𝟓^𝟐 + 𝟒^𝟐 ) × √(𝟏^𝟐 + 𝟏^𝟐 + 𝟐^𝟐 ))| = |(3 + 5 + 8)/(√(9 + 25 + 16) √(1 + 1 + 4))| = |16/(√50 √6)| = |16/(5√2 × √2 √3)| = |16/(5 × 2 × √3)| = 𝟖/(𝟓 √𝟑) = 8/(5 √3) × √3/√3 = (𝟖√𝟑)/(𝟏𝟓 ) So, cos θ = (8√3)/(15 ) ∴ θ = cos-1((𝟖√𝟑)/(𝟏𝟓 )) Therefore, the angle between the given pair of line is cos−1 ((8√3)/(15 ))