Chapter 11 Class 12 Three Dimensional Geometry
Ex 11.1, 2
Example, 6 Important You are here
Example, 7
Example 10 Important
Ex 11.2, 5 Important
Ex 11.2, 9 (i) Important
Ex 11.2, 10 Important
Ex 11.2, 12 Important
Ex 11.2, 13 Important
Ex 11.2, 15 Important
Question 10 Important
Question 11 Important
Question 13 Important
Question 14
Question 15 Important
Question 4 (a) Important
Question 11 Important
Question 12 Important
Question 14 (a) Important
Question 17 Important
Question 19 Important
Question 20 Important
Misc 3 Important
Misc 4 Important
Question 10 Important
Question 14 Important
Misc 5 Important
Question 16 Important
Chapter 11 Class 12 Three Dimensional Geometry
Last updated at Dec. 16, 2024 by Teachoo
Example 6 Find the vector and the Cartesian equations of the line through the point (5, 2, – 4) and which is parallel to the vector 3𝑖 ̂ + 2𝑗 ̂ – 8𝑘 ̂ . Vector equation Equation of a line passing through a point with position vector 𝑎 ⃗ , and parallel to a vector 𝑏 ⃗ is 𝒓 ⃗ = 𝒂 ⃗ + 𝜆𝒃 ⃗ Since line passes through (5, 2, −4) 𝒂 ⃗ = 5𝑖 ̂ + 2𝑗 ̂ − 4𝑘 ̂ Since line is parallel to 3𝒊 ̂ + 2𝒋 ̂ − 8𝒌 ̂ 𝒃 ⃗ = 3𝑖 ̂ + 2𝑗 ̂ − 8𝑘 ̂ Equation of line 𝑟 ⃗ = 𝑎 ⃗ + 𝜆𝑏 ⃗ 𝒓 ⃗ = (5𝒊 ̂ + 2𝒋 ̂ − 4𝒌 ̂) + 𝜆 (3𝒊 ̂ + 2𝒋 ̂ − 8𝒌 ̂) Cartesian equation Equation of a line passing through a point (x, y, z) and parallel to a line with direction ratios a, b, c is (𝒙 − 𝒙𝟏)/𝒂 = (𝒚 − 𝒚𝟏)/𝒃 = (𝒛 − 𝒛𝟏)/𝒄 Since line passes through (5, 2, −4) 𝒙1 = 5, y1 = 2 , z1 = −4 Also, line is parallel to 3𝒊 ̂ + 2𝒋 ̂ −8𝒌 ̂ , 𝒂 = 3, b = 2, c = −8 Equation of line in Cartesian form is (𝑥 − 𝑥1)/𝑎 = (𝑦 − 𝑦1)/𝑏 = (𝑧 − 𝑧1)/𝑐 (𝑥 − 5)/3 = (𝑦 − 2)/2 = (𝑧 − (−4))/( −8) (𝒙 − 𝟓)/𝟑 = (𝒚 − 𝟐)/𝟐 = (𝒛 + 𝟒)/(−𝟖)