Examples
Example, 2 Important
Example, 3 You are here
Example, 4 Important
Example, 5 Important
Example, 6 Important
Example, 7
Example 8 Important
Example 9
Example 10 Important
Question 1
Question 2
Question 3 Important
Question 4
Question 5
Question 6 Important
Question 7
Question 8
Question 9 Important
Question 10 Important
Question 11 Important
Question 12
Question 13 Important
Question 14
Question 15 Important
Question 16
Question 17 Important
Question 18 Important
Question 19 Important
Question 20 Important
Last updated at Dec. 16, 2024 by Teachoo
Example 3 Find the direction cosines of the line passing through the two points (– 2, 4, – 5) and (1, 2, 3). Direction ratios of a line passing through two points P(x1, y1, z1,), & Q (x2, y2, z2) = (x2 – x1), (y2 − y1), (z2 − z1) Direction cosines = (𝒙𝟐 − 𝒙𝟏)/𝑷𝑸 , (𝒚𝟐 − 𝒚𝟏)/𝑷𝑸 , (𝒛𝟐 − 𝒛𝟏)/𝑷𝑸 where, PQ = √((𝑥2 − 𝑥1)^2 + (𝑦2 − 𝑦1)^2 + (𝑧2 − 𝑧1)^2 ) Given P (−2, 4, − 5) & Q (1, 2, 3) So, x1 = −2, y1 = 4, z1 = −5 & x2 = 1, y2 = 2, z2 = 3 Direction ratios = (x2 – x1), (y2 − y1), (z2 − z1) = 1 − (−2), 2 − 4, 3 − (−5) = 1 + 2, −2, 3 + 5 = 3, −2, 8 Direction cosines = 3/√(32 + (−2)2 + 82) , ( −2)/√(32 + (−2)2 + 82) , 8/√(32 + (−2)2 + 82) = 3/√(9 + 4 + 64) , ( −2)/√(9 + 4 + 64) , 8/√(9 + 4 + 64) = 𝟑/√𝟕𝟕 , ( −𝟐)/√𝟕𝟕 , 𝟖/√𝟕𝟕