Miscellaneous
Misc 2 Important
Misc 3 Important
Misc 4 Important
Misc 5 Important
Question 1 Important
Question 2
Question 3 Important
Question 4
Question 5 Important
Question 6
Question 7 Important
Question 8 Important
Question 9 Important
Question 10 Important You are here
Question 11 Important
Question 12
Question 13 Important
Question 14 Important
Question 15
Question 16 Important
Question 17 (MCQ) Important
Question 18 (MCQ) Important
Miscellaneous
Last updated at April 16, 2024 by Teachoo
Question 10 If the points (1, 1 , p) and (ā3 , 0, 1) be equidistant from the plane š ā. (3š Ģ + 4š Ģ ā 12š Ģ) + 13 = 0, then find the value of p. The distance of a point with position vector š ā from the plane š ā.š ā = d is |(š ā.š ā ā š )/|š ā | | Given, the points are The equation of plane is š ā. (3š Ģ + 4š Ģ ā 12š Ģ) + 13 = 0 š ā.(3š Ģ + 4š Ģ ā 12š Ģ) = ā13 (1, 1, p) So, (š_1 ) ā = 1š Ģ + 1š Ģ + pš Ģ (ā3, 0, 1) So, (š_2 ) ā = ā3š Ģ + 0š Ģ + 1š Ģ āš ā.(3š Ģ + 4š Ģ ā 12š Ģ) = 13 š ā.(ā3š Ģ ā 4š Ģ + 12š Ģ) = 13 Comparing with š ā.š ā = d, š ā = ā3š Ģ ā 4š Ģ + 12š Ģ d = 13 Magnitude of š ā = ā((ā3)^2+(ā4)^2+ć12ć^2 ) |š ā | = ā(9+16+144) = ā169 = 13 Distance of point (šš) ā from plane |((š1) ā"." š ā" " ā š)/|š ā | | = |((1š Ģ + 1š Ģ + šš Ģ ).(ā3š Ģā4š Ģ+12š Ģ )ā13)/13| = |((1Ćā3)+(1Ćā4) +(šĆ12)ā13)/13| = |(ā3ā4+12šā13)/13| = |(12š ā 20)/13| Distance of point (šš) ā from plane |((š2) ā"." š ā ā š)/|š ā | | = |((ā3š Ģ +0š Ģ +1š Ģ ).(ā3š Ģā4š Ģ+12š Ģ )ā13)/13| = |((ā3Ćā3)+(0Ćā4) +(1Ć12)ā13)/13| = |(9 + 0 +12ā13)/13| = |8/13| = 8/13 Since the plane is equidistance from both the points, |(ššš ā šš)/šš| = š/šš |12šā20| = 8 (12p ā 20) = Ā± 8 12p ā 20 = 8 12p = 8 + 20 12p = 28 p = 28/12 p = 7/3 12p ā 20 = ā8 12p = ā8 + 20 12p = 12 p = 12/12 p = 1 Answer does not match at end. If mistake, please comment