Miscellaneous
Misc 2 Important
Misc 3 Important
Misc 4 Important You are here
Misc 5 Important
Question 1 Important
Question 2
Question 3 Important
Question 4
Question 5 Important
Question 6
Question 7 Important
Question 8 Important
Question 9 Important
Question 10 Important
Question 11 Important
Question 12
Question 13 Important
Question 14 Important
Question 15
Question 16 Important
Question 17 (MCQ) Important
Question 18 (MCQ) Important
Miscellaneous
Last updated at April 16, 2024 by Teachoo
Misc 4 Find the shortest distance between lines 𝑟 ⃗ = 6𝑖 ̂ + 2𝑗 ̂ + 2𝑘 ̂ + 𝜆 (𝑖 ̂ – 2𝑗 ̂ + 2𝑘 ̂) and 𝑟 ⃗ = –4𝑖 ̂ – 𝑘 ̂ + 𝜇 (3𝑖 ̂ – 2𝑗 ̂ – 2𝑘 ̂) .Shortest distance between lines with vector equations 𝑟 ⃗ = (𝑎1) ⃗ + 𝜆 (𝑏1) ⃗ and 𝑟 ⃗ = (𝑎2) ⃗ + 𝜇(𝑏2) ⃗ is |(((𝒃𝟏) ⃗ × (𝒃𝟐) ⃗ ).((𝒂𝟐) ⃗ − (𝒂𝟏) ⃗ ))/|(𝒃𝟏) ⃗ × (𝒃𝟐) ⃗ | | 𝒓 ⃗ = (6𝒊 ̂ + 2𝒋 ̂ + 2𝒌 ̂) + 𝜆 (𝒊 ̂ − 2𝒋 ̂ + 2𝒌 ̂) Comparing with 𝑟 ⃗ = (𝑎1) ⃗ + 𝜆(𝑏1) ⃗ , (𝑎1) ⃗ = 6𝑖 ̂ + 2𝑗 ̂ + 2𝑘 ̂ & (𝑏1) ⃗ = 1𝑖 ̂ − 2𝑗 ̂ + 2𝑘 ̂ 𝒓 ⃗ = (−4𝒊 ̂ − 𝒌 ̂) + 𝝁 (3𝒊 ̂ − 2𝒋 ̂ − 2𝒌 ̂) Comparing with 𝑟 ⃗ = (𝑎2) ⃗ + 𝜇(𝑏2) ⃗ , (𝑎2) ⃗ = − 4𝑖 ̂ + 0𝑗 ̂ − 1𝑘 ̂ & (𝑏2) ⃗ = 3𝑖 ̂ − 2𝑗 ̂ − 2𝑘 ̂ Now, ((𝒂𝟐) ⃗ − (𝒂𝟏) ⃗) = (−4𝑖 ̂ + 0𝑗 ̂ − 1𝑘 ̂) − (6𝑖 ̂ + 2𝑗 ̂ + 2𝑘 ̂) = (−4 − 6) 𝑖 ̂ + (0 − 2)𝑗 ̂ + (−1 − 2) 𝑘 ̂ = − 10𝒊 ̂ − 2𝒋 ̂ − 3𝒌 ̂ ((𝒃𝟏) ⃗ × (𝒃𝟐) ⃗) = |■8(𝑖 ̂&𝑗 ̂&𝑘 ̂@1& −2&2@3&−2&−2)| = 𝑖 ̂ [(−2×−2)−(−2×2)] − 𝑗 ̂ [(1×−2)−(3×2)] + 𝑘 ̂ [(1×−2)−(3×−2)] = 𝑖 ̂ [ 4+4] − 𝑗 ̂ [−2−6] + 𝑘 ̂ [−2+6] = 𝑖 ̂ (8) − 𝑗 ̂ (−8) + 𝑘 ̂(4) = 8𝒊 ̂ + 8𝒋 ̂ + 4𝒌 ̂ Magnitude of (𝑏1) ⃗ × (𝑏2) ⃗ = √(8^2+8^2+4^2 ) |(𝒃𝟏) ⃗ × (𝒃𝟐) ⃗ | = √(64+64+16) = √144 = 𝟏𝟐 Also, ((𝒃𝟏) ⃗×(𝒃𝟐) ⃗ ) . ((𝒂𝟐) ⃗ − (𝒂𝟏) ⃗ ) = (8𝑖 ̂ + 8𝑗 ̂ + 4𝑘 ̂).(− 10𝑖 ̂ − 2𝑗 ̂ − 3𝑘 ̂) = (8 × − 10) + (8 × − 2) + (4 × − 3) = − 80 + (−16) + (-12) = − 108 Shortest distance = |(((𝑏1) ⃗ × (𝑏2) ⃗ ) . ((𝑎2) ⃗ − (𝑎1) ⃗ ))/|(𝑏1) ⃗ × (𝑏2) ⃗ | | = |( −𝟏𝟎𝟖)/𝟏𝟐| = |−9| = 9 Therefore, the shortest distance between the given two lines is 9.