Plane
Question 1 (b)
Question 1 (c) Important
Question 1 (d) Important
Question 2
Question 3 (a)
Question 3 (b)
Question 3 (c) Important
Question 4 (a) Important
Question 4 (b)
Question 4 (c)
Question 4 (d) Important
Question 5 (a) Important
Question 5 (b)
Question 6 (a) Important
Question 6 (b)
Question 7
Question 8
Question 9
Question 10 Important
Question 11 Important
Question 12 Important You are here
Question 13 (a) Important
Question 13 (b) Important
Question 13 (c)
Question 13 (d)
Question 13 (e)
Question 14 (a) Important
Question 14 (b)
Question 14 (c)
Question 14 (d) Important
Last updated at April 16, 2024 by Teachoo
Question 12 Find the angle between the planes whose vector equations are 𝑟 ⃗ . (2𝑖 ̂ + 2𝑗 ̂ – 3𝑘 ̂) = 5 and 𝑟 ⃗ . (3𝑖 ̂ – 3𝑗 ̂ + 5𝑘 ̂) = 3 .Angle between two planes 𝑟 ⃗ . (𝑛_1 ) ⃗ = d1 and 𝑟 ⃗.(𝑛2) ⃗ = d2 is given by cos 𝜃 = |((𝒏𝟏) ⃗. (𝒏𝟐) ⃗)/|(𝒏𝟏) ⃗ ||(𝒏𝟐) ⃗ | | 𝒓 ⃗.(2𝒊 ̂ + 2𝒋 ̂ − 3𝒌 ̂) = 5 Comparing with 𝑟 ⃗.(𝑛1) ⃗ = (𝑑1) ⃗, (𝑛1) ⃗ = 2𝑖 ̂ + 2𝑗 ̂−3𝑘 ̂ Magnitude of (𝑛1) ⃗ = √(2^2+2^2+〖(−3)〗^2 ) |(𝑛1) ⃗ | = √(4+4+9) = √17 So, cos θ = |((2𝑖 ̂ + 2𝑗 ̂ − 3𝑘 ̂ ) . (3𝑖 ̂ − 3𝑗 ̂ + 5𝑘 ̂ ))/(√17 × √43)| = |((2 × 3) + (2 × −3) + (−3 × 5))/√(17 × 43)| = |(6 − 6 − 15)/√731| = |(−15)/√731| = 15/√731 So, cos θ = 15/√731 ∴ θ = cos−1(𝟏𝟓/√𝟕𝟑𝟏) Therefore, the angle between the planes is cos−1(15/√731).