
Chapter 11 Class 12 Three Dimensional Geometry
Chapter 11 Class 12 Three Dimensional Geometry
Last updated at Dec. 16, 2024 by Teachoo
Transcript
Question 12 Find the angle between the planes whose vector equations are 𝑟 ⃗ . (2𝑖 ̂ + 2𝑗 ̂ – 3𝑘 ̂) = 5 and 𝑟 ⃗ . (3𝑖 ̂ – 3𝑗 ̂ + 5𝑘 ̂) = 3 .Angle between two planes 𝑟 ⃗ . (𝑛_1 ) ⃗ = d1 and 𝑟 ⃗.(𝑛2) ⃗ = d2 is given by cos 𝜃 = |((𝒏𝟏) ⃗. (𝒏𝟐) ⃗)/|(𝒏𝟏) ⃗ ||(𝒏𝟐) ⃗ | | 𝒓 ⃗.(2𝒊 ̂ + 2𝒋 ̂ − 3𝒌 ̂) = 5 Comparing with 𝑟 ⃗.(𝑛1) ⃗ = (𝑑1) ⃗, (𝑛1) ⃗ = 2𝑖 ̂ + 2𝑗 ̂−3𝑘 ̂ Magnitude of (𝑛1) ⃗ = √(2^2+2^2+〖(−3)〗^2 ) |(𝑛1) ⃗ | = √(4+4+9) = √17 So, cos θ = |((2𝑖 ̂ + 2𝑗 ̂ − 3𝑘 ̂ ) . (3𝑖 ̂ − 3𝑗 ̂ + 5𝑘 ̂ ))/(√17 × √43)| = |((2 × 3) + (2 × −3) + (−3 × 5))/√(17 × 43)| = |(6 − 6 − 15)/√731| = |(−15)/√731| = 15/√731 So, cos θ = 15/√731 ∴ θ = cos−1(𝟏𝟓/√𝟕𝟑𝟏) Therefore, the angle between the planes is cos−1(15/√731).