Ex 11.3, 12 - Find angle between planes r.(2i + 2j - 3k) = 5

Ex 11.3, 12 - Chapter 11 Class 12 Three Dimensional Geometry - Part 2

Go Ad-free

Transcript

Question 12 Find the angle between the planes whose vector equations are 𝑟 ⃗ . (2𝑖 ̂ + 2𝑗 ̂ – 3𝑘 ̂) = 5 and 𝑟 ⃗ . (3𝑖 ̂ – 3𝑗 ̂ + 5𝑘 ̂) = 3 .Angle between two planes 𝑟 ⃗ . (𝑛_1 ) ⃗ = d1 and 𝑟 ⃗.(𝑛2) ⃗ = d2 is given by cos 𝜃 = |((𝒏𝟏) ⃗. (𝒏𝟐) ⃗)/|(𝒏𝟏) ⃗ ||(𝒏𝟐) ⃗ | | 𝒓 ⃗.(2𝒊 ̂ + 2𝒋 ̂ − 3𝒌 ̂) = 5 Comparing with 𝑟 ⃗.(𝑛1) ⃗ = (𝑑1) ⃗, (𝑛1) ⃗ = 2𝑖 ̂ + 2𝑗 ̂−3𝑘 ̂ Magnitude of (𝑛1) ⃗ = √(2^2+2^2+〖(−3)〗^2 ) |(𝑛1) ⃗ | = √(4+4+9) = √17 So, cos θ = |((2𝑖 ̂ + 2𝑗 ̂ − 3𝑘 ̂ ) . (3𝑖 ̂ − 3𝑗 ̂ + 5𝑘 ̂ ))/(√17 × √43)| = |((2 × 3) + (2 × −3) + (−3 × 5))/√(17 × 43)| = |(6 − 6 − 15)/√731| = |(−15)/√731| = 15/√731 So, cos θ = 15/√731 ∴ θ = cos−1(𝟏𝟓/√𝟕𝟑𝟏) Therefore, the angle between the planes is cos−1(15/√731).

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo