Chapter 11 Class 12 Three Dimensional Geometry
Ex 11.1, 2
Example, 6 Important
Example, 7
Example 10 Important
Ex 11.2, 5 Important
Ex 11.2, 9 (i) Important
Ex 11.2, 10 Important
Ex 11.2, 12 Important
Ex 11.2, 13 Important
Ex 11.2, 15 Important You are here
Question 10 Important
Question 11 Important
Question 13 Important
Question 14
Question 15 Important
Question 4 (a) Important
Question 11 Important
Question 12 Important
Question 14 (a) Important
Question 17 Important
Question 19 Important
Question 20 Important
Misc 3 Important
Misc 4 Important
Question 10 Important
Question 14 Important
Misc 5 Important
Question 16 Important
Chapter 11 Class 12 Three Dimensional Geometry
Last updated at Dec. 16, 2024 by Teachoo
Ex 11.2, 15 Find the shortest distance between the lines whose vector equations are š ā = (1 ā t) š Ģ + (t ā 2) š Ģ + (3 ā 2t) š Ģ and š ā = (s + 1) š Ģ + (2s ā 1) š Ģ ā (2s + 1) š Ģ Shortest distance between lines with vector equations š ā = (š1) ā + š (š1) ā and š ā = (š2) ā + š(š2) ā is |("(" (šš) āĆ (šš) ā")" ."(" (šš) ā ā (šš) ā")" )/|(šš) ā Ć (šš) ā | | š ā = (š ā t) š Ģ + (šāš)š Ģ + (3 ā 2t) š Ģ = 1š Ģ ā tš Ģ + tš Ģ ā 2š Ģ + 3š Ģ ā 2tš Ģ = (1š Ģ ā 2š Ģ + 3š Ģ) + t(ā1š Ģ + 1š Ģ ā 2š Ģ) Comparing with š ā = (š1) ā + t (š1) ā, (š1) ā = 1š Ģ ā 2š Ģ + 3š Ģ & (š1) ā = ā 1š Ģ + 1š Ģ ā 2š Ģ š ā = (š + 1) š Ģ + (šš" ā " š)š Ģ ā (2s + 1) š Ģ = sš Ģ + 1š Ģ + 2sš Ģ ā 1š Ģ ā 2sš Ģ ā 1š Ģ = (1š Ģ ā 1š Ģ ā 1š Ģ) + s(1š Ģ + 2š Ģ ā 2š Ģ) Comparing with š ā = (š2) ā + s (š2) ā, (š2) ā = 1š Ģ ā 1š Ģ ā 1š Ģ & (š2) ā = 1š Ģ + 2š Ģ ā 2š Ģ Now, ((šš) ā ā (š_š ) ā) = (1š Ģ ā 1š Ģ ā 1š Ģ) ā (1š Ģ ā 2š + 3š Ģ) = (1 ā 1) š Ģ + ( ā 1 + 2)š Ģ + ( ā 1 ā 3)š Ģ = 0š Ģ + 1š Ģ ā 4š Ģ ( (š_š ) āĆ (š_š ) ā ) = |ā 8(š Ģ&š Ģ&š Ģ@ ā1&1& ā2@1&2& ā2)| = š Ģ[(1Ćā 2)ā(2Ćā 2)] ā š Ģ[(ā1Ćā2)ā(1Ćā 2)] + š Ģ[(ā 1Ć2)ā(1Ć1)] = š Ģ[ā2+4] ā š Ģ[2+2] A + š Ģ[ā2ā1] = 2š Ģ ā 4š Ģ ā 3š Ģ Magnitude of ((š1) āĆ(š2) ā) = ā(22+(ā 4)2+(ā 3)2) |(šš) āĆ(šš) ā | = ā(4+16+9) = āšš Also, ((šš) ā Ć (šš) ā) . ((šš) ā ā (šš) ā) = (2š Ģ ā 4š Ģ ā 3š Ģ) . (0š Ģ + 1š Ģ ā 4š Ģ) = (2 Ć 0) + (ā4 Ć 1) + (ā3 Ć ā4) = ā0 + (ā4) + 12 = 8 So, shortest distance = |(((š_1 ) ā Ć (š_2 ) ā ) . ((š_2 ) ā Ć (š_1 ) ā ).)/((š_1 ) ā Ć (š_2 ) ā )| = |8/ā29| = š/āšš Therefore, the shortest distance between the given two lines is 8/ā29 .