Shortest distance between two skew lines
Shortest distance between two skew lines
Last updated at April 16, 2024 by Teachoo
Ex 11.2, 15 Find the shortest distance between the lines whose vector equations are š ā = (1 ā t) š Ģ + (t ā 2) š Ģ + (3 ā 2t) š Ģ and š ā = (s + 1) š Ģ + (2s ā 1) š Ģ ā (2s + 1) š Ģ Shortest distance between lines with vector equations š ā = (š1) ā + š (š1) ā and š ā = (š2) ā + š(š2) ā is |("(" (šš) āĆ (šš) ā")" ."(" (šš) ā ā (šš) ā")" )/|(šš) ā Ć (šš) ā | | š ā = (š ā t) š Ģ + (šāš)š Ģ + (3 ā 2t) š Ģ = 1š Ģ ā tš Ģ + tš Ģ ā 2š Ģ + 3š Ģ ā 2tš Ģ = (1š Ģ ā 2š Ģ + 3š Ģ) + t(ā1š Ģ + 1š Ģ ā 2š Ģ) Comparing with š ā = (š1) ā + t (š1) ā, (š1) ā = 1š Ģ ā 2š Ģ + 3š Ģ & (š1) ā = ā 1š Ģ + 1š Ģ ā 2š Ģ š ā = (š + 1) š Ģ + (šš" ā " š)š Ģ ā (2s + 1) š Ģ = sš Ģ + 1š Ģ + 2sš Ģ ā 1š Ģ ā 2sš Ģ ā 1š Ģ = (1š Ģ ā 1š Ģ ā 1š Ģ) + s(1š Ģ + 2š Ģ ā 2š Ģ) Comparing with š ā = (š2) ā + s (š2) ā, (š2) ā = 1š Ģ ā 1š Ģ ā 1š Ģ & (š2) ā = 1š Ģ + 2š Ģ ā 2š Ģ Now, ((šš) ā ā (š_š ) ā) = (1š Ģ ā 1š Ģ ā 1š Ģ) ā (1š Ģ ā 2š + 3š Ģ) = (1 ā 1) š Ģ + ( ā 1 + 2)š Ģ + ( ā 1 ā 3)š Ģ = 0š Ģ + 1š Ģ ā 4š Ģ ( (š_š ) āĆ (š_š ) ā ) = |ā 8(š Ģ&š Ģ&š Ģ@ ā1&1& ā2@1&2& ā2)| = š Ģ[(1Ćā 2)ā(2Ćā 2)] ā š Ģ[(ā1Ćā2)ā(1Ćā 2)] + š Ģ[(ā 1Ć2)ā(1Ć1)] = š Ģ[ā2+4] ā š Ģ[2+2] A + š Ģ[ā2ā1] = 2š Ģ ā 4š Ģ ā 3š Ģ Magnitude of ((š1) āĆ(š2) ā) = ā(22+(ā 4)2+(ā 3)2) |(šš) āĆ(šš) ā | = ā(4+16+9) = āšš Also, ((šš) ā Ć (šš) ā) . ((šš) ā ā (šš) ā) = (2š Ģ ā 4š Ģ ā 3š Ģ) . (0š Ģ + 1š Ģ ā 4š Ģ) = (2 Ć 0) + (ā4 Ć 1) + (ā3 Ć ā4) = ā0 + (ā4) + 12 = 8 So, shortest distance = |(((š_1 ) ā Ć (š_2 ) ā ) . ((š_2 ) ā Ć (š_1 ) ā ).)/((š_1 ) ā Ć (š_2 ) ā )| = |8/ā29| = š/āšš Therefore, the shortest distance between the given two lines is 8/ā29 .