Chapter 11 Class 12 Three Dimensional Geometry
Ex 11.1, 2
Example, 6 Important
Example, 7
Example 10 Important
Ex 11.2, 5 Important
Ex 11.2, 9 (i) Important You are here
Ex 11.2, 10 Important
Ex 11.2, 12 Important
Ex 11.2, 13 Important
Ex 11.2, 15 Important
Question 10 Important
Question 11 Important
Question 13 Important
Question 14
Question 15 Important
Question 4 (a) Important
Question 11 Important
Question 12 Important
Question 14 (a) Important
Question 17 Important
Question 19 Important
Question 20 Important
Misc 3 Important
Misc 4 Important
Question 10 Important
Question 14 Important
Misc 5 Important
Question 16 Important
Chapter 11 Class 12 Three Dimensional Geometry
Last updated at April 16, 2024 by Teachoo
Ex 11.2, 9 Find the angle between the following pairs of lines: (i) (𝑥 − 2)/2 = (𝑦 − 1)/5 = (𝑧 + 3)/(−3) and (𝑥 + 2)/(−1) = (𝑦 − 4)/8 = (𝑧 − 5)/4Angle between the pair of lines (𝑥 − 𝑥1)/𝑎1 = (𝑦 − 𝑦1)/𝑏1 = (𝑧 − 𝑧1)/𝑐1 and (𝑥 − 𝑥2)/𝑎2 = (𝑦 − 𝑦2)/𝑏2 = (𝑧 − 𝑧2)/𝑐2 is given by cos θ = |(𝒂_𝟏 𝒂_𝟐 + 𝒃_𝟏 𝒃_𝟐 +〖 𝒄〗_𝟏 𝒄_𝟐)/(√(〖𝒂_𝟏〗^𝟐 + 〖𝒃_𝟏〗^𝟐+ 〖𝒄_𝟏〗^𝟐 ) √(〖𝒂_𝟐〗^𝟐 +〖〖 𝒃〗_𝟐〗^𝟐+ 〖𝒄_𝟐〗^𝟐 ))| (𝒙 − 𝟐)/𝟐 = (𝒚 − 𝟏)/𝟓 = (𝒛 + 𝟑)/( − 𝟑) (𝑥 − 2)/2 = (𝑦 − 1)/5 = (𝑧 − (−3))/( − 3) Comparing with (𝑥 − 𝑥1)/𝑎1 = (𝑦 − 𝑦1)/𝑏1 = (𝑧 − 𝑧1)/𝑐1 x1 = 2, y1 = 1, z1 = –3 & 𝒂1 = 2, b1 = 5, c1 = –3 (𝒙 + 𝟐)/( − 𝟏) = (𝒚 − 𝟒)/𝟖 = (𝒛 − 𝟓)/𝟒 (𝑥 − (− 2))/( − 1) = (𝑦 − 4)/8 = (𝑧 − 5)/4 Comparing with (𝑥 − 𝑥2)/𝑎2 = (𝑦 − 𝑦2)/𝑏2 = (𝑧 − 𝑧2)/𝑐2 𝑥2 = − 2, y2 = 4, z2 = 5 & 𝒂2 = –1, 𝒃2 = 8, 𝒄2 = 4 Now, cos θ = |(𝒂_𝟏 𝒂_𝟐 + 𝒃_𝟏 𝒃_𝟐 +〖 𝒄〗_𝟏 𝒄_𝟐)/(√(〖𝒂_𝟏〗^𝟐 + 〖𝒃_𝟏〗^𝟐+ 〖𝒄_𝟏〗^𝟐 ) √(〖𝒂_𝟐〗^𝟐 +〖〖 𝒃〗_𝟐〗^𝟐+ 〖𝒄_𝟐〗^𝟐 ))| = |((2 × −1) + (5 × 8) + ( − 3 × 4) )/(√(2^2 + 5^2 + 〖(−3)〗^2 ) √(〖(−1)〗^2 + 8^2 + 4^2 ))| = |( −2 + 40 + (−12) )/(√(4 + 25 + 9) √(1 + 64 + 16))| = |𝟐𝟔/(√𝟑𝟖 √𝟖𝟏)| = |26/(√38 × 9)| = 𝟐𝟔/(𝟗√𝟑𝟖 ) So, cos θ = 26/(9√38 ) ∴ θ = cos−1 (𝟐𝟔/(𝟗√𝟑𝟖 )) Therefore, the angle between the given lines is cos-1 (26/(9√38 )).