Slide36.JPG

Slide37.JPG

Go Ad-free

Transcript

Supplementary Exercise Q7 Show that the four points A, B, C and D with position vectors 4𝑖 ̂ + 5𝑗 ̂ + 𝑘 ̂, −(𝑗 ̂ + 𝑘 ̂), 3𝑖 ̂ + 9𝑗 ̂ + 4𝑘 ̂ and −4𝑖 ̂ + 4𝑗 ̂ + 4𝑘 ̂, respectively are co-planar Four points A, B, C, D are coplanar if the three vectors (𝐴𝐵) ⃗ , (𝐴𝐶) ⃗ and (𝐴𝐷) ⃗ are coplanar. i.e. [(𝑨𝑩) ⃗, (𝑨𝑪) ⃗, (𝑨𝑫) ⃗ ] = 0 A (4𝑖 ̂ + 5𝑗 ̂ + 𝑘 ̂) B (−𝑗 ̂ − 𝑘 ̂) (𝑨𝑩) ⃗ = (0𝑖 ̂ − 𝑗 ̂ − 𝑘 ̂) − (4𝑖 ̂ + 5𝑗 ̂ + 𝑘 ̂) = −4𝒊 ̂ − 6𝒋 ̂ − 2𝒌 ̂ A (4𝑖 ̂ + 5𝑗 ̂ + 𝑘 ̂) C (3𝑖 ̂ + 9𝑗 ̂ + 4𝑘 ̂) (𝑨𝑪) ⃗ = (3𝑖 ̂ + 9𝑗 ̂ + 4𝑘 ̂) − (4𝑖 ̂ + 5𝑗 ̂ + 𝑘 ̂) = –𝒊 ̂ + 4𝒋 ̂ + 3𝒌 ̂ A (4𝑖 ̂ + 5𝑗 ̂ + 𝑘 ̂) D (−4𝑖 ̂ + 4𝑗 ̂ + 4𝑘 ̂) (𝑨𝑫) ⃗ = (−4𝑖 ̂ + 4𝑗 ̂ + 4𝑘 ̂) − (4𝑖 ̂ + 5𝑗 ̂ + 𝑘 ̂) = –8𝒊 ̂ − 𝒋 ̂ + 3𝒌 ̂ [(𝐴𝐵) ⃗, (𝐴𝐶) ⃗, (𝐴𝐷) ⃗ ] = |■8(−4&−6&−2@−1&4&3@−8&−1&3)| = −4[(4×3)−(−1×3) ] − (−6) [(–1 × 3) – (–8 × 3)] + (−2)[(−1×−1)−(−8×4) ] = –4 [12+3]+6[−3+24]−2[1+32] = −4 (15) + 6 (21) − 2 (33) = −60 + 126 − 66 = −126+ 126 = 0 ∴[(𝐴𝐵) ⃗, (𝐴𝐶) ⃗, (𝐴𝐷) ⃗ ] = 0 Therefore, points A, B, C and D are coplanar.

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo