
Supplementary examples and questions from CBSE
Supplementary examples and questions from CBSE
Last updated at Dec. 16, 2024 by Teachoo
Transcript
Supplementary Exercise Q7 Show that the four points A, B, C and D with position vectors 4𝑖 ̂ + 5𝑗 ̂ + 𝑘 ̂, −(𝑗 ̂ + 𝑘 ̂), 3𝑖 ̂ + 9𝑗 ̂ + 4𝑘 ̂ and −4𝑖 ̂ + 4𝑗 ̂ + 4𝑘 ̂, respectively are co-planar Four points A, B, C, D are coplanar if the three vectors (𝐴𝐵) ⃗ , (𝐴𝐶) ⃗ and (𝐴𝐷) ⃗ are coplanar. i.e. [(𝑨𝑩) ⃗, (𝑨𝑪) ⃗, (𝑨𝑫) ⃗ ] = 0 A (4𝑖 ̂ + 5𝑗 ̂ + 𝑘 ̂) B (−𝑗 ̂ − 𝑘 ̂) (𝑨𝑩) ⃗ = (0𝑖 ̂ − 𝑗 ̂ − 𝑘 ̂) − (4𝑖 ̂ + 5𝑗 ̂ + 𝑘 ̂) = −4𝒊 ̂ − 6𝒋 ̂ − 2𝒌 ̂ A (4𝑖 ̂ + 5𝑗 ̂ + 𝑘 ̂) C (3𝑖 ̂ + 9𝑗 ̂ + 4𝑘 ̂) (𝑨𝑪) ⃗ = (3𝑖 ̂ + 9𝑗 ̂ + 4𝑘 ̂) − (4𝑖 ̂ + 5𝑗 ̂ + 𝑘 ̂) = –𝒊 ̂ + 4𝒋 ̂ + 3𝒌 ̂ A (4𝑖 ̂ + 5𝑗 ̂ + 𝑘 ̂) D (−4𝑖 ̂ + 4𝑗 ̂ + 4𝑘 ̂) (𝑨𝑫) ⃗ = (−4𝑖 ̂ + 4𝑗 ̂ + 4𝑘 ̂) − (4𝑖 ̂ + 5𝑗 ̂ + 𝑘 ̂) = –8𝒊 ̂ − 𝒋 ̂ + 3𝒌 ̂ [(𝐴𝐵) ⃗, (𝐴𝐶) ⃗, (𝐴𝐷) ⃗ ] = |■8(−4&−6&−2@−1&4&3@−8&−1&3)| = −4[(4×3)−(−1×3) ] − (−6) [(–1 × 3) – (–8 × 3)] + (−2)[(−1×−1)−(−8×4) ] = –4 [12+3]+6[−3+24]−2[1+32] = −4 (15) + 6 (21) − 2 (33) = −60 + 126 − 66 = −126+ 126 = 0 ∴[(𝐴𝐵) ⃗, (𝐴𝐶) ⃗, (𝐴𝐷) ⃗ ] = 0 Therefore, points A, B, C and D are coplanar.