Slide22.JPG

Slide23.JPG
Slide24.JPG
Slide25.JPG

Go Ad-free

Transcript

Supplementary Exercise Q3 Find the volumes of the following parallelepipeds whose three co –terminus edges are (i) π‘Ž βƒ— = 2𝑖 Μ‚ βˆ’ 3𝑗 Μ‚ + 4π‘˜ Μ‚, 𝑏 βƒ— = 3𝑖 Μ‚ βˆ’ 𝑗 Μ‚ + 2π‘˜ Μ‚, and 𝑐 βƒ— = 𝑖 Μ‚ + 2𝑗 Μ‚ βˆ’ π‘˜ Μ‚, Given, π‘Ž βƒ— = 2𝑖 Μ‚ βˆ’ 3𝑗 Μ‚ + 4π‘˜ Μ‚ , 𝑏 βƒ— = 3𝑖 Μ‚ – 𝑗 Μ‚ + 2π‘˜ Μ‚ , 𝑐 βƒ— = 𝑖 Μ‚ + 2𝑗 Μ‚ – π‘˜ Μ‚ Volume of parallelepiped = [𝒂 βƒ—" " 𝒃 βƒ—" " 𝒄 βƒ— ] = |β– 8(2&βˆ’3&4@3&βˆ’1&2@1&2&βˆ’1)| = 2[(βˆ’1Γ—βˆ’1)βˆ’(2Γ—2) ] βˆ’ (βˆ’3) [(3Γ—βˆ’1)βˆ’(1Γ—2) ] + 4[(3Γ—2)βˆ’(1Γ—βˆ’1)] = 2 [1βˆ’4]+3(βˆ’3βˆ’2)+4[6+1] = 2(–3) + 3 (–5) + 4(7) = –6 – 15 + 28 = 7 Supplementary Exercise Q3 Find the volumes of the following parallelepipeds whose three co –terminus edges are (ii) π‘Ž βƒ— = 𝑖 Μ‚ βˆ’ 2𝑗 Μ‚ + 3π‘˜ Μ‚, 𝑏 βƒ— = 2𝑖 Μ‚ + 𝑗 Μ‚ βˆ’ π‘˜ Μ‚, and 𝑐 βƒ— = 2𝑖 Μ‚ + 𝑗 Μ‚ βˆ’ π‘˜ Μ‚, Given, π‘Ž βƒ— = 𝑖 Μ‚ βˆ’ 2𝑗 Μ‚ + 3π‘˜ Μ‚ , 𝑏 βƒ— = 2𝑖 Μ‚ + 𝑗 Μ‚ – π‘˜ Μ‚ , 𝑐 βƒ— = 2𝑖 Μ‚ + 𝑗 Μ‚ – π‘˜ Μ‚ Volume of parallelepiped = [𝒂 βƒ—" " 𝒃 βƒ—" " 𝒄 βƒ— ] = |β– 8(1&βˆ’2&3@2&1&βˆ’1@2&1&βˆ’1)| = 1[(1Γ—βˆ’1)βˆ’(1Γ—βˆ’1)] βˆ’ (βˆ’2) [(2Γ—βˆ’1)βˆ’(2Γ—βˆ’1)] + 3[(2Γ—1)βˆ’(2Γ—1)] = 1 [βˆ’1+1]+2(βˆ’2+2)+3[2βˆ’2] = 1(0) + 2 (0) + 3(0) = 0

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo