Miscellaneous
Misc 2
Misc 3 Important
Misc 4
Misc 5 Important
Misc 6
Misc 7 Important
Misc 8 Important
Misc 9
Misc 10
Misc 11 Important
Misc 12 Important
Misc 13
Misc 14 Important You are here
Misc 15 Important
Misc 16 (MCQ) Important
Misc 17 (MCQ) Important
Misc 18 (MCQ) Important
Misc 19 (MCQ) Important
Last updated at Dec. 16, 2024 by Teachoo
You saved atleast 2 minutes by viewing the ad-free version of this page. Thank you for being a part of Teachoo Black.
Misc 14 If 𝑎 ⃗, 𝑏 ⃗, 𝑐 ⃗ are mutually perpendicular vectors of equal magnitudes, show that the vector 𝑎 ⃗ + 𝑏 ⃗ + 𝑐 ⃗ is equally inclined to 𝑎 ⃗, 𝑏 ⃗ and 𝑐 ⃗ . Given 𝑎 ⃗, 𝑏 ⃗, 𝑐 ⃗ are of equal magnitudes, So, |𝒂 ⃗ | = |𝒃 ⃗ | = |𝒄 ⃗ | Also, 𝑎 ⃗ , 𝑏 ⃗ , 𝑐 ⃗ are mutually perpendicular to each other So, 𝒂 ⃗ . 𝒃 ⃗ = 𝒃 ⃗ . 𝒄 ⃗ = 𝒄 ⃗ . 𝒂 ⃗ = 0 We need to show (𝑎 ⃗ + 𝑏 ⃗ + 𝑐 ⃗) is equally inclined to 𝑎 ⃗, 𝑏 ⃗, 𝑐 ⃗ ; (𝒂 ⃗ + 𝒃 ⃗ + 𝒄 ⃗). 𝒂 ⃗ = |𝑎 ⃗+𝑏 ⃗+𝑐 ⃗ ||𝑎 ⃗ | cos 𝜶 where 𝛼 = angle b/w (𝑎 ⃗+𝑏 ⃗+𝑐 ⃗) and 𝑎 ⃗ 𝒂 ⃗ . 𝒂 ⃗ + 𝒃 ⃗ . 𝒂 ⃗ + 𝒄 ⃗ . 𝒂 ⃗ = |𝑎 ⃗+𝑏 ⃗+𝑐 ⃗ ||𝑎 ⃗ | cos 𝛼 |𝑎 ⃗ |2 + 0 + 0 = |𝑎 ⃗+𝑏 ⃗+𝑐 ⃗ ||𝑎 ⃗ | cos 𝛼 cos 𝜶 = |𝒂 ⃗ |/|𝒂 ⃗ + 𝒃 ⃗ + 𝒄 ⃗ | (𝒂 ⃗ + 𝒃 ⃗ + 𝒄 ⃗). 𝒃 ⃗ = |𝑎 ⃗+𝑏 ⃗+𝑐 ⃗ ||𝑏 ⃗ | cos 𝜷 where 𝛽 = angle b/w (𝑎 ⃗+𝑏 ⃗+𝑐 ⃗) and 𝑏 ⃗ 𝒂 ⃗ . 𝒃 ⃗ + 𝒃 ⃗ . 𝒃 ⃗ + 𝒄 ⃗ . 𝒃 ⃗ = |𝑎 ⃗+𝑏 ⃗+𝑐 ⃗ ||𝑏 ⃗ | cos 𝛽 0 +|𝑏 ⃗ |2 + 0 = |𝑎 ⃗+𝑏 ⃗+𝑐 ⃗ ||𝑏 ⃗ | cos 𝛽 cos 𝜷 = |𝒃 ⃗ |/|(𝒂 ) ⃗ + 𝒃 ⃗ + 𝒄 ⃗ | (𝒂 ⃗ + 𝒃 ⃗ + 𝒄 ⃗). 𝒄 ⃗ = |𝑎 ⃗+𝑏 ⃗+𝑐 ⃗ ||𝑐 ⃗ | cos 𝜸 where 𝛾 = angle b/w = (𝑎 ⃗+𝑏 ⃗+𝑐 ⃗) and 𝑐 ⃗ 𝒂 ⃗ . 𝒄 ⃗ + 𝒃 ⃗ . 𝒄 ⃗ + 𝒄 ⃗ . 𝒄 ⃗ = |𝑎 ⃗+𝑏 ⃗+𝑐 ⃗ ||𝑐 ⃗ | cos 𝛾 0 + 0+|𝑐 ⃗ |2 = |𝑎 ⃗+𝑏 ⃗+𝑐 ⃗ ||𝑐 ⃗ | cos 𝛾 cos 𝜸 = |𝒄 ⃗ |/|𝒂 ⃗ + 𝒃 ⃗ + 𝒄 ⃗ | Property : 𝑎 ⃗ . 𝑏 ⃗ = 𝑏 ⃗ . 𝑎 ⃗ 𝑎 ⃗ . 𝑎 ⃗ = |𝑎 ⃗ |2 Property : 𝑎 ⃗ . 𝑏 ⃗ = 𝑏 ⃗ . 𝑎 ⃗ 𝑎 ⃗ . 𝑎 ⃗ = |𝑎 ⃗ |2 Property : 𝑎 ⃗ . 𝑏 ⃗ = 𝑏 ⃗ . 𝑎 ⃗ 𝑎 ⃗ . 𝑎 ⃗ = |𝑎 ⃗ |2 So, cos 𝛼 = |𝑎 ⃗ |/|𝑎 ⃗ + 𝑏 ⃗ + 𝑐 ⃗ | , cos 𝛽 = |𝑏 ⃗ |/|(𝑎 ) ⃗ + 𝑏 ⃗ + 𝑐 ⃗ | , cos 𝛾 = |𝑐 ⃗ |/|𝑎 ⃗ + 𝑏 ⃗ + 𝑐 ⃗ | But |𝒂 ⃗ | = |𝒃 ⃗ | = |𝒄 ⃗ | Thus, cos 𝜶 = cos 𝜷 = cos 𝜸 ∴ 𝛼 = 𝛽 = 𝛾 Therefore, (𝑎 ⃗ + 𝑏 ⃗ + 𝑐 ⃗) is equally inclined to 𝑎 ⃗, 𝑏 ⃗, 𝑐 ⃗.