Miscellaneous
Misc 2
Misc 3 Important
Misc 4
Misc 5 Important
Misc 6
Misc 7 Important
Misc 8 Important
Misc 9
Misc 10
Misc 11 Important
Misc 12 Important
Misc 13 You are here
Misc 14 Important
Misc 15 Important
Misc 16 (MCQ) Important
Misc 17 (MCQ) Important
Misc 18 (MCQ) Important
Misc 19 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Misc 13 The scalar product of the vector 𝑖 ̂ + 𝑗 ̂ + 𝑘 ̂ with a unit vector along the sum of vectors 2𝑖 ̂ + 4𝑗 ̂ − 5𝑘 ̂ and λ𝑖 ̂ + 2𝑗 ̂ + 3𝑘 ̂ is equal to one. Find the value of λ. Let 𝒂 ⃗ = 𝑖 ̂ + 𝑗 ̂ + 𝑘 ̂ 𝒃 ⃗ = 2𝑖 ̂ + 4𝑗 ̂ – 5𝑘 ̂ 𝒄 ⃗ = 𝜆 𝑖 ̂ + 2𝑗 ̂ + 3𝑘 ̂ (𝒃 ⃗ + 𝒄 ⃗) = (2 + 𝜆) 𝑖 ̂ + (4 + 2) 𝑗 ̂ + (−5 + 3) 𝑘 ̂ = (2 + 𝜆) 𝒊 ̂ + 6𝒋 ̂ − 2𝒌 ̂ Let 𝒓 ̂ be unit vector along (𝑏 ⃗ + 𝑐 ⃗) 𝑟 ̂ = 1/(𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 (𝑏 ⃗" + " 𝑐 ⃗)) × (𝑏 ⃗ + 𝑐 ⃗) 𝑟 ̂ = 1/√((2 + 𝜆)^2 + 6^2 + (−2)^2 ) × ((2 + 𝜆) 𝑖 ̂ + 6𝑗 ̂ − 2𝑘 ̂) 𝑟 ̂ = 1/√(2^2 + 𝜆^2 + 4𝜆 + 36 + 4) × ((2 + 𝜆) 𝑖 ̂ + 6𝑗 ̂ − 2𝑘 ̂) 𝒓 ̂ = 𝟏/√(𝝀^𝟐 + 𝟒𝝀 +𝟒𝟒) × ((2 + 𝜆) 𝒊 ̂ + 6𝒋 ̂ − 2𝒌 ̂) Given, 𝒂 ⃗. (𝒓 ̂) = 1 (1𝑖 ̂ + 1𝑗 ̂ + 1𝑘 ̂). (1/√(𝜆^2 + 4𝜆 +44) " × ((2 + 𝜆) " 𝑖 ̂" + 6" 𝑗 ̂" − 2" 𝑘 ̂")" ) = 1 1/√(𝜆^2 + 4𝜆 +44) (1𝑖 ̂ + 1𝑗 ̂ + 1𝑘 ̂).((𝜆 +2) 𝑖 ̂ + 6𝑗 ̂ − 2𝑘 ̂) = 1 (1𝑖 ̂ + 1𝑗 ̂ + 1𝑘 ̂).((𝜆 +2) 𝑖 ̂ + 6𝑗 ̂ − 2𝑘 ̂) = √(𝜆^2 + 4𝜆 +44) 1.(𝜆 + 2) + 1.6 + 1.(−2) = √(𝜆^2 + 4𝜆 +44) 𝜆 + 2 + 6 − 2 = √(𝜆^2 + 4𝜆 +44) 𝜆 + 6 = √(𝝀^𝟐 + 𝟒𝝀 +𝟒𝟒) Squaring both sides (𝜆 + 6)2 = (√(𝜆^2 + 4𝜆 +44))^2 𝜆2 + 36 + 12𝜆 = 𝜆^2 + 4𝜆 +44 8𝜆 = 8 𝜆 = 8/8 𝜆 = 1 So, 𝜆 = 1