Miscellaneous 12.jpg

Miscellaneous 12.jpg
  Misc 12 - Chapter 10 Class 12 Vector Algebra - Part 3
Misc 12 - Chapter 10 Class 12 Vector Algebra - Part 4
Misc 12 - Chapter 10 Class 12 Vector Algebra - Part 5

Go Ad-free

Transcript

Misc 12 Let 𝑎 ⃗ = 𝑖 ̂ + 4𝑗 ̂ + 2𝑘 ̂, 𝑏 ⃗ = 3𝑖 ̂ − 2𝑗 ̂ + 7𝑘 ̂ and 𝑐 ⃗ = 2𝑖 ̂ − 𝑗 ̂ + 4𝑘 ̂ . Find a vector 𝑑 ⃗ which is perpendicular to both 𝑎 ⃗ and 𝑏 ⃗ and 𝑐 ⃗ ⋅ 𝑑 ⃗ = 15 . Given 𝒂 ⃗ = 𝑖 ̂ + 4𝑗 ̂ + 2𝑘 ̂ 𝒃 ⃗ = 3𝑖 ̂ - 2𝑗 ̂ + 7𝑘 ̂ 𝒄 ⃗ = 2𝑖 ̂ + 𝑗 ̂ + 4𝑘 ̂ Let 𝒅 ⃗ = x𝒊 ̂ + y𝒋 ̂ + z𝒌 ̂ Since 𝒅 ⃗ is perpendicular to 𝑎 ⃗ and 𝑏 ⃗ 𝑑 ⃗ . 𝑎 ⃗ = 0 & 𝑑 ⃗ . 𝑏 ⃗ = 0 𝒅 ⃗ . 𝒂 ⃗ = 0 (x𝑖 ̂ + y𝑗 ̂ + z𝑘 ̂). (1𝑖 ̂ + 4𝑗 ̂ + 2𝑘 ̂) = 0 (x × 1) + (y × 4) + (z × 2) = 0 x + 4y + 2z = 0 𝒅 ⃗ . 𝒃 ⃗ = 0 (x𝑖 ̂ + y𝑗 ̂ + z𝑘 ̂). (3𝑖 ̂ − 2𝑗 ̂ + 7𝑘 ̂) = 0 (x × 3) + (y × -2) + (z × 7) = 0 3x − 2y + 7z = 0 Also, 𝑐 ⃗ . 𝑑 ⃗ = 15 (2𝑖 ̂ – 1𝑗 ̂ + 4𝑘 ̂). (x𝑖 ̂ + y𝑗 ̂ + z𝑘 ̂) = 15 (2 × x) + (−1 × y) + (4 × 2) = 15 2x − y + 4z = 15 Now, we need to solve equations x + 4y + 2z = 0 3x − 2y + 7z = 0 & 2x − y + 4z = 15 Solving x + 4y + 2z = 0 3x – 2y + 7z = 0 𝑥/(28 − (−4) ) = 𝑦/(6 − 7 ) = 𝑧/(−2 − 12 ) 𝒙/(𝟑𝟐 ) = 𝒚/(−𝟏 ) = 𝒛/(−𝟏𝟒 ) Writing x & y in terms of z ∴ x = 32𝑧/(−14) = (−𝟏𝟔𝒛)/𝟕 & y = (−1𝑧)/(−14) = 𝒛/𝟏𝟒 Putting values of x and y in (3) 2x – y + 4z = 15 2 ((−16𝑧)/7 ) − (𝑧/14 ) + 4z = 5 (−32)/7 z − 1/14 z + 4/1 z = 15 ((−64 − 1 + 56))/14 z = 15 (−9)/14 z = 15 z = 15 × 14/(−9) z = (−𝟕𝟎)/𝟑 Putting value of z in x & y, x = (−16𝑧)/7 = (−16)/7 × (−70)/3 = 𝟏𝟔𝟎/𝟑 y = 𝑧/14 = 1/14 × (−70)/3 = (−𝟓)/𝟑 Therefore, the required vector 𝑑 ⃗ = x𝑖 ̂ + y𝑗 ̂ + z𝑘 ̂ = 160/3 𝑖 ̂ − 5/3 𝑗 ̂ – 70/3 𝑘 ̂ = 𝟏/𝟑 (160𝒊 ̂ − 5𝒋 ̂ – 70𝒌 ̂) Note: Answer given in the book is incorrect If we have made any mistake, please email at [email protected]

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo