Miscellaneous
Misc 2
Misc 3 Important
Misc 4
Misc 5 Important
Misc 6
Misc 7 Important
Misc 8 Important You are here
Misc 9
Misc 10
Misc 11 Important
Misc 12 Important
Misc 13
Misc 14 Important
Misc 15 Important
Misc 16 (MCQ) Important
Misc 17 (MCQ) Important
Misc 18 (MCQ) Important
Misc 19 (MCQ) Important
Last updated at Dec. 16, 2024 by Teachoo
You saved atleast 2 minutes by viewing the ad-free version of this page. Thank you for being a part of Teachoo Black.
Misc 8 (Introduction) Show that the points A(1, β 2, β 8), B (5, 0, β 2) and C (11, 3, 7) are collinear, and find the ratio in which B divides AC. (1) Three points collinear i.e. AB + BC = AC (2) Three position vectors collinear i.e. |(π΄π΅) β | + |(π΅πΆ) β | = |(π΄πΆ) β | Misc 8 Show that the points A(1, β 2, β 8), B (5, 0, β 2) and C (11, 3, 7) are collinear, and find the ratio in which B divides AC. vGiven A (1, -2, β8) B (5, 0,β2) C (11, 3, 7) 3 points A, B, C are collinear if |(π¨π©) β | + |(π©πͺ) β | = |(π¨πͺ) β | Finding (π¨π©) β , (π©πͺ) β , (π¨πͺ) β (π¨π©) β = (5 β 1) π Μ + (0 β (β2)) π Μ + (β2β(β8)) π Μ = 4π Μ + 2π Μ + 6π Μ (π©πͺ) β = (11 β 5) π Μ + (3 β 0) π Μ + (7β(β2)) π Μ = 6π Μ + 3π Μ + 9π Μ (π¨πͺ) β = (11 β 1) π Μ + (3 β (β2)) π Μ + (7β(β8)) π Μ = 10π Μ + 5π Μ + 15π Μ Magnitude of (π΄π΅) β = β(42+22+62) |(π¨π©) β | = β(16+4+36) = β56 = β(4Γ14 ) = 2βππ Magnitude of (π΅πΆ) β = β(62+32+92) |(π©πͺ) β |= β(36+9+81) = β126 = β(9Γ14 ) = 3βππ Magnitude of (π΄πΆ) β = β(102+52+152) |(π¨πͺ) β |= β(100+25+225)= β350 = β(25 Γ 14 ) = 5βππ Thus, |(π¨π©) β | + |(π©πͺ) β | = 2β(14 ) + 3β(14 ) = 5β(14 ) = |(π¨πͺ) β | Thus, A, B and C are collinear. Finding the ratio in which B divides AC Let B divide AC in the ratio k : 1 Here, (πΆπ¨) β = 1π Μ β 2π Μ β 8π Μ (πΆπ©) β = 5π Μ + 0π Μ β 2π Μ and (πΆπͺ) β = 11π Μ + 3π Μ + 7π Μ Position vector of π© = (π(πΆπͺ) β + π.(πΆπ¨) β)/(π + π) 5π Μ + 0π Μ β 2π Μ = (π(11π Μ + 3π Μ + 7π Μ ) + 1(1π Μ β 2π Μ β 8π Μ ))/(π + 1) 5π Μ + 0π Μ β 2π Μ = (11ππ Μ + 3ππ Μ + 7π π Μ + π Μ β 2π Μ β 8π Μ)/(π + 1) 5π Μ + 0π Μ β 2π Μ = ((πππ + π) π Μ + (ππ β π) π Μ + (ππ β π) π Μ)/(π + π) Since the two vectors are equal, corresponding components are also equal. So, (πππ + π)/(π + π) = 5 11k + 1 = 5k + 5 11k β 5k = 5 β 1 6k = 4 k = 4/6 = 2/3 Thus, B divides AC in the ratio 2 : 3