Miscellaneous
Misc 2
Misc 3 Important
Misc 4
Misc 5 Important
Misc 6
Misc 7 Important You are here
Misc 8 Important
Misc 9
Misc 10
Misc 11 Important
Misc 12 Important
Misc 13
Misc 14 Important
Misc 15 Important
Misc 16 (MCQ) Important
Misc 17 (MCQ) Important
Misc 18 (MCQ) Important
Misc 19 (MCQ) Important
Last updated at Dec. 16, 2024 by Teachoo
Misc 7 If 𝑎 ⃗ = 𝑖 ̂ + 𝑗 ̂ + 𝑘 ̂, 𝑏 ⃗ = 2𝑖 ̂ −𝑗 ̂ + 3𝑘 ̂ and 𝑐 ⃗ = 𝑖 ̂ − 2𝑗 ̂ + 𝑘 ̂ , find a unit vector parallel to the vector 2𝑎 ⃗ – 𝑏 ⃗ + 3𝑐 ⃗ . Given 𝑎 ⃗ = 𝑖 ̂ + 𝑗 ̂ + 𝑘 ̂ 𝑏 ⃗ = 2𝑖 ̂ + 𝑗 ̂ + 3𝑘 ̂ 𝑐 ⃗ = 𝑖 ̂ − 2𝑗 ̂ + 𝑘 ̂ Let 𝒓 ⃗ = 2𝒂 ⃗ − 𝒃 ⃗ + 3𝒄 ⃗ = 2(𝑖 ̂ + 𝑗 ̂ + 𝑘 ̂) − (2𝑖 ̂ − 𝑗 ̂ + 3𝑘 ̂) + 3(𝑖 ̂ −2𝑗 ̂ + 𝑘 ̂) = 2𝑖 ̂ + 2𝑗 ̂ + 2𝑘 ̂ − 2𝑖 ̂ + 1𝑗 ̂ − 3𝑘 ̂ + 3𝑖 ̂ − 6𝑗 ̂ + 3𝑘 ̂ = (2 − 2 + 3) 𝑖 ̂ + (2 + 1 − 6) 𝑗 ̂ + (2 − 3 + 3) 𝑘 ̂ = 3𝒊 ̂ – 3𝒋 ̂ + 2𝒌 ̂ ∴ 𝒓 ⃗ = 3𝒊 ̂ – 3𝒋 ̂ + 2𝒌 ̂ Magnitude of 𝑟 ⃗ = √(32+(−3)2+22) |𝒓 ⃗ | = √(9+9+4) = √𝟐𝟐 Unit vector in the direction of 𝑟 ⃗ = 𝟏/|𝒓 ⃗ | x 𝒓 ⃗ = 1/√22 × [3𝑖 ̂ −3𝑗 ̂+2𝑘 ̂ ] = 3/√22 𝑖 ̂ – 3/√22 𝑗 ̂ + 2/√22 𝑘 ̂ Hence the required vector is 𝟑/√𝟐𝟐 𝒊 ̂ – 𝟑/√𝟐𝟐 𝒋 ̂ + 𝟐/√𝟐𝟐 𝒌 ̂