Examples
Example 2 Important
Example 3 Important
Example 4
Example 5
Example 6 Important
Example 7
Example 8 Important
Example 9
Example 10
Example 11 (i) Important
Example 11 (ii) Important
Example 12 Important
Example 13
Example 14 Important
Example 15
Example 16 Important
Example 17
Example 18 Important
Example 19
Example 20
Example 21 Important
Example 22
Example 23 Important
Example 24
Example 25 Important
Example 26 You are here
Example 27 Important
Example 28 Important
Example 29 Important
Example 30 Important
Example 26 (Supplementary NCERT)
Example 27 (Supplementary NCERT)
Example 28 (Supplementary NCERT) Important
Example 29 (Supplementary NCERT) Important
Example 30 (Supplementary NCERT) Important
Example 31 (Supplementary NCERT) Important
Last updated at Dec. 16, 2024 by Teachoo
= π Μ(1 β (-4)) β j Μ (3 β 4) + π Μ (β3 β1) = π Μ(1 + 4) β j Μ (β1) + π Μ (β4) = 5π Μ + π Μ β 4π Μ Magnitude of π β Γ π β = β(52+1^2+(β4)2) |π β Γ π β | = β(25+1+16) = βππ Area of parallelogram ABCD = |π β Γ π β | = β42 Therefore, the required area is βππ . Let the unit vector be π β We know that π β = π₯π Μ + yπ Μ + zπ Μ Since the vector is in XY plane, there is no Z βcoordinate. Hence, π β = xπ Μ + yπ Μ + 0π Μ π β = ππ Μ + yπ Μ Taking a general vector π β, Making an angle π with the x β axis Unit vector in direction of x axis is π Μ & in y axis is π Μ Angle with X-axis Since π β makes an angle of ΞΈ with x-axis So, angle between π β & π Μ is ΞΈ We know that, π β . π β = |π β ||π β | cos ΞΈ, Putting π β = π β , π β = π Μ & ΞΈ = ΞΈ π β .π Μ = |π β ||π Μ | cos ΞΈ π β .π Μ = 1 Γ 1 Γ cos ΞΈ π β . π Μ = cos ΞΈ (π₯π Μ + yπ Μ + 0π Μ). π Μ = cos ΞΈ (π₯π Μ + yπ Μ + 0π Μ). (1π Μ + 0π Μ + 0π Μ) = cos ΞΈ π₯.1 + y.0 + 0.0 = cos ΞΈ (As π β is unit vector, |π β | = 1 & π Μ is a unit vector, |π Μ | = 1) x = cos ΞΈ Angle with Y-axis π β makes an angle of (90Β° β ΞΈ) with y-axis So, angle between π β & π Μ is (90Β° β ΞΈ) We know that, π β . π β = |π β ||π β | cos ΞΈ, Putting π β = π β , π β = π Μ & ΞΈ = (90Β° β ΞΈ) π β .π Μ = |π β ||π Μ | cos (90Β° β ΞΈ) π β .π Μ = 1 Γ 1 Γ cos (90Β° β ΞΈ) π β .π Μ = cos (90Β° β ΞΈ) π β .π Μ = sin ΞΈ (As π β is unit vector, |π β | = 1 & π Μ is a unit vector, |π Μ | = 1) (π₯π Μ + yπ Μ + 0π Μ). π Μ = sin ΞΈ (π₯π Μ + yπ Μ + 0π Μ). (0π Μ + 1π Μ + 0π Μ) = sin ΞΈ π₯.0 + y.1 + 0.0 = sin ΞΈ y = sin ΞΈ Thus, π β = xπ Μ + yπ Μ π β = cos ππ Μ + sin π π Μ This value will be true in all quadrants So, 0 β€ ΞΈ β€ 2Ο Therefore, π β = cos ππ Μ + sinππ Μ ; for 0 β€ ΞΈ β€ 2Ο