Examples
Example 2 Important
Example 3 Important
Example 4
Example 5
Example 6 Important
Example 7
Example 8 Important
Example 9
Example 10
Example 11 (i) Important
Example 11 (ii) Important
Example 12 Important You are here
Example 13
Example 14 Important
Example 15
Example 16 Important
Example 17
Example 18 Important
Example 19
Example 20
Example 21 Important
Example 22
Example 23 Important
Example 24
Example 25 Important
Example 26
Example 27 Important
Example 28 Important
Example 29 Important
Example 30 Important
Example 26 (Supplementary NCERT)
Example 27 (Supplementary NCERT)
Example 28 (Supplementary NCERT) Important
Example 29 (Supplementary NCERT) Important
Example 30 (Supplementary NCERT) Important
Example 31 (Supplementary NCERT) Important
Last updated at April 16, 2024 by Teachoo
Example 12 (Method 1) Show that the points A(2π Μ β π Μ + π Μ), B(π Μ β 3π Μ β 5π Μ) , C(3π Μ β 4π Μ β 4π Μ) are the vertices of a right angled triangle. Given A (2π Μ β π Μ + π Μ), B (π Μ β 3π Μ β 5π Μ) C (3π Μ β 4π Μ β 4π Μ) We know that two vectors are perpendicular to each other, if their scalar product is zero. Finding (π¨π©) β , (π©πͺ) β , (π¨πͺ) β (π¨π©) β = (π Μ β 3π Μ β 5π Μ) β (2π Μ β π Μ + π Μ) = (1 β 2) π Μ + (β3 + 1) π Μ + (β5 β 1) π Μ = β1π Μ β 2π Μ β 6π Μ (π©πͺ) β = (3π Μ β 4π Μ β 4π Μ) β (π Μ β 3π Μ β 5π Μ) = (3 β 1) π Μ + (β4 + 3) π Μ + (β4 + 5) π Μ = 2π Μ β 1π Μ + 1π Μ (πͺπ¨) β = (2π Μ β π Μ + π Μ) β (3π Μ β 4π Μ β 4π Μ) = (2 β 3) π Μ + (β1 + 4) π Μ + (1 + 4) π Μ = β1π Μ + 3π Μ + 5π Μ Finding (π©πͺ) β. (πͺπ¨) β (π©πͺ) β. (πͺπ¨) β = (2π Μ β 1π Μ + 1π Μ) . (-1π Μ + 3π Μ + 5π Μ) = (2 Γ β1) + (β1 Γ 3) + (1 Γ 5) = (β2) + (β3) + 5 = β5 + 5 = 0 Since, (π©πͺ) β. (πͺπ¨) β = 0 Therefore, (π΅πΆ) β is perpendicular to (πΆπ΄) β . Hence, Ξ ABC is a right angled triangle Example 12 (Method 2) Show that the points A(2π Μ β π Μ + π Μ), B(π Μ β 3π Μ β 5π Μ) , C(3π Μ β 4π Μ β 4π Μ) are the vertices of a right angled triangle. Given A (2π Μ β π Μ + π Μ), B (π Μ β 3π Μ β 5π Μ) C (3π Μ β 4π Μ β 4π Μ) Considering βABC as a right angled triangle, By Pythagoras theorem, AB2 = BC2 + CA2 or |("AB" ) β |"2" = |("BC" ) β |"2" + |("CA" ) β |"2" Finding (π¨π©) β , (π©πͺ) β , (π¨πͺ) β (π¨π©) β = (π Μ β 3π Μ β 5π Μ) β (2π Μ β π Μ + π Μ) = (1 β 2) π Μ + (β3 + 1) π Μ + (β5 β1) π Μ = β1π Μ β 2π Μ β 6π Μ (π©πͺ) β = (3π Μ β 4π Μ β 4π Μ) β (π Μ β 3π Μ β 5π Μ) = (3 β 1) π Μ + (β4 + 3) π Μ + (β4 + 5) π Μ = 2π Μ β 1π Μ + 1π Μ (πͺπ¨) β = (2π Μ β π Μ + π Μ) β (3π Μ β 4π Μ β 4π Μ) = (2 β 3) π Μ + (β1 + 4) π Μ + (1 + 4) π Μ = β1π Μ + 3π Μ + 5π Μ Now, "Magnitude of " (π¨π©) β" = " β((β1)2+(β2)2+(β6)2) " " |(π΄π΅) β |" = " β(1+4+36) " = " βππ Magnitude of (π©πͺ) β = β(22+(β1)2+1) |(π΅πΆ) β | = β(4+1+1) = βπ Magnitude of (πͺπ¨) β = β((β1)2+32+52) |(πΆπ΄) β | = β(1+9+25) = βππ Now, |(π©πͺ) β |^π + |(πͺπ¨) β |^π = (β6)2 + (β35)2 = 6 + 35 = 41 = (β41)2 = |(π¨π©) β |^π Thus, |(π¨π©) β |^π = |(π©πͺ) β |^π + |(πͺπ¨) β |^π Hence, by Pythagoras Theorem, Ξ ABC is a right angled triangle.