Ex 10.2
Ex 10.2, 2
Ex 10.2, 3 Important
Ex 10.2, 4
Ex 10.2, 5 Important
Ex 10.2, 6
Ex 10.2, 7 Important
Ex 10.2, 8
Ex 10.2, 9
Ex 10.2, 10 Important
Ex 10.2, 11 Important
Ex 10.2, 12
Ex 10.2, 13 Important
Ex 10.2, 14
Ex 10.2, 15 Important
Ex 10.2, 16
Ex 10.2, 17 Important
Ex 10.2, 18 (MCQ) Important You are here
Ex 10.2, 19 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 10.2, 18 In triangle ABC (Fig 10.18),which of the following is not true (A) (π΄π΅) β + (π΅πΆ) β + (πΆπ΄) β= 0 β (B) (π΄π΅) β + (π΅πΆ) β β (π΄πΆ) β= 0 β (C) (π΄π΅) β + (π΅πΆ) β β (πΆπ΄) β= 0 β (D) (π΄π΅) β β (πΆπ΅) β + (πΆπ΄) β= 0 β In Ξ ABC, (π΄πΆ) β is the resultant of (π΄π΅) β & (π΅πΆ) β (π΄πΆ) β = (π΄π΅) β + (π΅πΆ) β (π΄π΅) β + (π΅πΆ) β = (π΄πΆ) β (π΄π΅) β + (π΅πΆ) β β (π΄πΆ) β = 0 β Checking part (A) (π¨π©) β + (π©πͺ) β + (πͺπ¨) β= π β From (1) (π΄π΅) β + (π΅πΆ) β β (π΄πΆ) β = 0 β (π΄π΅) β + (π΅πΆ) β β (β(πΆπ΄) β) = 0 β (π΄π΅) β + (π΅πΆ) β + (πΆπ΄) β = 0 β Hence, (A) is true. Checking part (B) (π¨π©) β + (π©πͺ) β β (π¨πͺ) β= π β From (1) (π΄π΅) β + (π΅πΆ) β β (π΄πΆ) β = 0 β Hence, (B) is true. Checking part (C) (π¨π©) β + (π©πͺ) β β (πͺπ¨) β= π β From (1) (π΄π΅) β + (π΅πΆ) β β (π΄πΆ) β = 0 β (π΄π΅) β + (π΅πΆ) β β (β(πΆπ΄) β) = 0 β (π΄π΅) β + (π΅πΆ) β + (πΆπ΄) β = 0 β Hence, (C) is not true. Checking part (D) (π¨π©) β β (πͺπ©) β + (πͺπ¨) β= π β From (1) (π΄π΅) β + (π΅πΆ) β β (π΄πΆ) β = 0 β (AB) β β (CB) β + (CA) β = 0 β Hence, (D) is true. Thus, (C) is the correct option