Chapter 10 Class 12 Vector Algebra
Ex 10.2, 9
Ex 10.2, 10 Important You are here
Ex 10.2, 13 Important
Ex 10.2, 17 Important
Example 14 Important
Example 16 Important
Example 21 Important
Ex 10.3, 2
Ex 10.3, 3 Important
Ex 10.3, 10 Important
Ex 10.3, 13 Important
Ex 10.3, 16 Important
Example 23 Important
Example 24
Example 25 Important
Ex 10.4, 2 Important
Ex 10.4, 5 Important
Ex 10.4, 9 Important
Ex 10.4, 10
Ex 10.4, 11 (MCQ) Important
Example 28 Important
Example 29 Important
Example 30 Important
Misc 6
Misc 12 Important
Misc 13
Misc 15 Important
Misc 19 (MCQ) Important
Chapter 10 Class 12 Vector Algebra
Last updated at April 16, 2024 by Teachoo
Ex 10.2, 10 Find a vector in the direction of vector 5π Μ β π Μ + 2π Μ which has magnitude 8 units.π β = 5π Μ β π Μ + 2π Μ = 5π Μ β 1π Μ + 2π Μ Magnitude of π β = β(52+(β1)2+22) |π β | = β(25+1+4) = β30 Unit vector in direction of π β = 1/|π β | . π β π Μ = 1/β30 . [5π Μβ1π Μ+2π Μ ] π Μ = 5/β30 π Μ β 1/β30 π Μ + 2/β30 π Μ Thus, unit vector π Μ = 5/β30 π Μ β 1/β30 π Μ + 2/β30 π Μ Vector with magnitude 1 = 5/β30 π Μ β 1/β30 π Μ + 2/β30 π Μ Vector with magnitude 8 = 8 [5/β30 π Μ" β " 1/β30 π Μ" + " 2/β30 π Μ ] = ππ/βππ π Μ β π/βππ π Μ + ππ/βππ π Μ Hence, the required vector is 40/β30 π Μ β 8/β30 π Μ + 16/β30 π Μ