Ex 10.2
Ex 10.2, 2
Ex 10.2, 3 Important
Ex 10.2, 4
Ex 10.2, 5 Important
Ex 10.2, 6
Ex 10.2, 7 Important
Ex 10.2, 8
Ex 10.2, 9 You are here
Ex 10.2, 10 Important
Ex 10.2, 11 Important
Ex 10.2, 12
Ex 10.2, 13 Important
Ex 10.2, 14
Ex 10.2, 15 Important
Ex 10.2, 16
Ex 10.2, 17 Important
Ex 10.2, 18 (MCQ) Important
Ex 10.2, 19 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 10.2, 9 For given vectors, 𝑎 ⃗ = 2𝑖 ̂ − 𝑗 ̂ + 2𝑘 ̂ and 𝑏 ⃗ = −𝑖 ̂ + 𝑗 ̂ − 𝑘 ̂ , find the unit vector in the direction of the vector 𝑎 ⃗ + 𝑏 ⃗𝑎 ⃗ = 2𝑖 ̂ − j ̂ + 2𝑘 ̂ = 2𝑖 ̂ – 1𝑗 ̂ + 2𝑘 ̂ 𝑏 ⃗ = −𝑖 ̂ + 𝑗 ̂ – 𝑘 ̂ = −1𝑖 ̂ + 1𝑗 ̂ – 1𝑘 ̂ Now, (𝑎 ⃗ + 𝑏 ⃗) = (2 – 1) 𝑖 ̂ + (-1 + 1) 𝑗 ̂ + (2 – 1) 𝑘 ̂ = 1𝑖 ̂ + 0𝑗 ̂ + 1𝑘 ̂ Let 𝑐 ⃗ = 𝑎 ⃗ + 𝑏 ⃗ ∴ c ⃗ = 1𝑖 ̂ + 0𝑗 ̂ + 1𝑘 ̂ Magnitude of 𝑐 ⃗ = √(12+02+12) |𝑐 ⃗ | = √(1+0+1) = √2 Unit vector in direction of 𝑐 ⃗ = 1/|𝑐 ⃗ | . 𝑐 ⃗ 𝑐 ̂ = 1/√2 [1𝑖 ̂+0𝑗 ̂+1𝑘 ̂ ] 𝑐 ̂ = 1/√2 𝑖 ̂ + 0𝑗 ̂ + 1/√2 𝑘 ̂ 𝑐 ̂ = 𝟏/√𝟐 𝒊 ̂ + 𝟏/√𝟐 𝒌 ̂ Thus, unit vector in direction of 𝑐 ⃗ = 1/√2 𝑖 ̂ + 1/√2 𝑘 ̂