Chapter 10 Class 12 Vector Algebra
Ex 10.2, 9 You are here
Ex 10.2, 10 Important
Ex 10.2, 13 Important
Ex 10.2, 17 Important
Example 14 Important
Example 16 Important
Example 21 Important
Ex 10.3, 2
Ex 10.3, 3 Important
Ex 10.3, 10 Important
Ex 10.3, 13 Important
Ex 10.3, 16 Important
Example 23 Important
Example 24
Example 25 Important
Ex 10.4, 2 Important
Ex 10.4, 5 Important
Ex 10.4, 9 Important
Ex 10.4, 10
Ex 10.4, 11 (MCQ) Important
Example 28 Important
Example 29 Important
Example 30 Important
Misc 6
Misc 12 Important
Misc 13
Misc 15 Important
Misc 19 (MCQ) Important
Chapter 10 Class 12 Vector Algebra
Last updated at April 16, 2024 by Teachoo
Ex 10.2, 9 For given vectors, 𝑎 ⃗ = 2𝑖 ̂ − 𝑗 ̂ + 2𝑘 ̂ and 𝑏 ⃗ = −𝑖 ̂ + 𝑗 ̂ − 𝑘 ̂ , find the unit vector in the direction of the vector 𝑎 ⃗ + 𝑏 ⃗𝑎 ⃗ = 2𝑖 ̂ − j ̂ + 2𝑘 ̂ = 2𝑖 ̂ – 1𝑗 ̂ + 2𝑘 ̂ 𝑏 ⃗ = −𝑖 ̂ + 𝑗 ̂ – 𝑘 ̂ = −1𝑖 ̂ + 1𝑗 ̂ – 1𝑘 ̂ Now, (𝑎 ⃗ + 𝑏 ⃗) = (2 – 1) 𝑖 ̂ + (-1 + 1) 𝑗 ̂ + (2 – 1) 𝑘 ̂ = 1𝑖 ̂ + 0𝑗 ̂ + 1𝑘 ̂ Let 𝑐 ⃗ = 𝑎 ⃗ + 𝑏 ⃗ ∴ c ⃗ = 1𝑖 ̂ + 0𝑗 ̂ + 1𝑘 ̂ Magnitude of 𝑐 ⃗ = √(12+02+12) |𝑐 ⃗ | = √(1+0+1) = √2 Unit vector in direction of 𝑐 ⃗ = 1/|𝑐 ⃗ | . 𝑐 ⃗ 𝑐 ̂ = 1/√2 [1𝑖 ̂+0𝑗 ̂+1𝑘 ̂ ] 𝑐 ̂ = 1/√2 𝑖 ̂ + 0𝑗 ̂ + 1/√2 𝑘 ̂ 𝑐 ̂ = 𝟏/√𝟐 𝒊 ̂ + 𝟏/√𝟐 𝒌 ̂ Thus, unit vector in direction of 𝑐 ⃗ = 1/√2 𝑖 ̂ + 1/√2 𝑘 ̂