Question 14 (MCQ) - Miscellaneous - Chapter 8 Class 12 Application of Integrals
Last updated at Dec. 16, 2024 by Teachoo
Miscellaneous
Misc 1 (ii) Important
Misc 2 Important
Misc 3 Important
Misc 4 (MCQ)
Misc 5 (MCQ) Important
Question 1
Question 2
Question 3 Important
Question 4
Question 5
Question 6 Important
Question 7
Question 8 Important
Question 9 Important
Question 10
Question 11 Important
Question 12
Question 13 (MCQ)
Question 14 (MCQ) Important You are here
Miscellaneous
Last updated at Dec. 16, 2024 by Teachoo
Misc 19 The area bounded by the π¦-axis, π¦=cosβ‘π₯ and π¦=sinβ‘π₯ when 0β€π₯β€π/2 is (A) 2 ( β("2 β1" )) (B) β("2 β1" ) (C) β("2 " )+1 (D) β("2 " ) Finding point of intersection B Solving π¦=cosβ‘π₯ and π¦=sππβ‘π₯ cosβ‘π₯=sππβ‘π₯ At π₯=π/4 , both are equal Also, π¦=cosβ‘π₯ = cos π/4 = 1/β2 So, B =((π )/4 , 1/β2) Area Required Area Required = Area ABCO β Area BCO Area ABCO Area ABCO = β«_0^(π/4)βγπ¦ ππ₯γ Here, π¦=cosβ‘π₯ Thus, Area ABCO =β«_0^(π/4)βγcosβ‘π₯ ππ₯γ =[sinβ‘π₯ ]_0^(π/4) =[sinβ‘γπ/4βsinβ‘0 γ ] =1/β2β0 =1/β2 Area BCO Area BCO = β«_0^(π/4)βγπ¦ ππ₯γ Here, π¦=sinβ‘π₯ Thus, Area BCO =β«_0^(π/4)βγsinβ‘π₯ ππ₯γ =[γβcππ γβ‘π₯ ]_0^(π/4) =β[cosβ‘γπ/4βcosβ‘(0) γ ] =β[1/β2β1] =1β1/β2 Therefore Area Required = Area ABCO β Area BCO =1/β2β[1β1/β2] =1/β2+1/β2β1 =2/β2β1 =βπβπ β΄ Option B is Correct