Misc 5 (MCQ) - Chapter 8 Class 12 Application of Integrals
Last updated at Dec. 16, 2024 by Teachoo
Area bounded by curve and horizontal or vertical line
Area bounded by curve and horizontal or vertical line
Last updated at Dec. 16, 2024 by Teachoo
Misc 5 The area bounded by the curve 𝑦 = 𝑥 |𝑥| , 𝑥−𝑎𝑥𝑖𝑠 and the ordinates 𝑥 = – 1 and 𝑥=1 is given by (A) 0 (B) 1/3 (C) 2/3 (D) 4/3 [Hint : 𝑦=𝑥2 if 𝑥 > 0 𝑎𝑛𝑑 𝑦 =−𝑥2 if 𝑥 < 0]We know that |𝑥|={█(𝑥, 𝑥≥0@&−𝑥, 𝑥<0)┤ Therefore, y = x|𝒙|={█(𝒙𝒙, 𝒙≥𝟎@&𝒙(−𝒙), 𝒙<𝟎)┤ y ={█(𝑥^2, 𝑥≥0@&−𝑥^2, 𝑥<0)┤ Now, Area Required = Area ABO + Area DCO Area ABO Area ABO =∫_(−1)^0▒〖𝑦 𝑑𝑥〗 Here, 𝑦=〖−𝑥〗^2 Therefore, Area ABO =∫_(−1)^0▒〖〖−𝑥〗^2 𝑑𝑥〗 〖=−[𝑥^3/3]〗_(−1)^0 =−[0^3/3−(−1)^3/3] =(−𝟏)/𝟑 Since Area is always positive, Area ABO = 𝟏/𝟑 Area DCO Area DCO =∫_0^1▒〖𝑦 𝑑𝑥〗 Here, 𝑦=𝑥^2 Therefore, Area DCO =∫_𝟎^𝟏▒〖𝒙^𝟐 𝒅𝒙〗 〖=[𝑥^3/3]〗_0^1 =1/3 [1^3−0^3 ] =1/3 [1−0] =𝟏/𝟑 Therefore, Required Area = Area ABO + Area DCO =1/3+1/3 =𝟐/𝟑 square units So, the correct answer is (c)