Slide1.JPG

Slide2.JPG
Slide3.JPG
Slide4.JPG

Go Ad-free

Transcript

Ex 8.1, 1 Find the area of the region bounded by the ellipse π‘₯^2/16+𝑦^2/9=1Equation Of Given Ellipse is π‘₯^2/16+𝑦^2/9=1 𝒙^𝟐/(πŸ’)^𝟐 +π’š^𝟐/(πŸ‘)^𝟐 =𝟏 Area of ellipse = Area of ABCD = 2 Γ— [Area Of ABC] = 2 Γ— ∫_(βˆ’πŸ’)^πŸ’β–’γ€–π’š.γ€— 𝒅𝒙 Finding y We know that π‘₯^2/16+𝑦^2/9=1 𝑦^2/9=1βˆ’π‘₯^2/16 𝑦^2/9=(16βˆ’π‘₯^2)/16 π’š^𝟐=πŸ—/πŸπŸ” (πŸπŸ”βˆ’π’™^𝟐 ) Taking square root on both sides y = Β± √(9/16 (16βˆ’π‘₯^2 ) ) y = Β± 3/4 √(16βˆ’π‘₯^2 ) Since, ABC is above x-axis y will be positive ∴ π’š=πŸ‘/πŸ’ √(πŸπŸ”βˆ’π’™^𝟐 ) Now, Area of ellipse = 2 Γ— ∫_(βˆ’4)^4▒〖𝑦.γ€— 𝑑π‘₯ = 2 Γ— ∫_(βˆ’πŸ’)^πŸ’β–’γ€– πŸ‘/πŸ’ √(πŸπŸ”βˆ’π’™^𝟐 )γ€— 𝒅𝒙 = 2 Γ— 3/4 ∫_(βˆ’4)^4β–’βˆš(16βˆ’π‘₯^2 ) 𝑑π‘₯ = πŸ‘/𝟐 ∫_(βˆ’πŸ’)^πŸ’β–’βˆš((πŸ’)^πŸβˆ’π’™^𝟐 ) 𝒅𝒙 It is of form √(π‘Ž^2βˆ’π‘₯^2 ) 𝑑π‘₯=1/2 π‘₯√(π‘Ž^2βˆ’π‘₯^2 )+π‘Ž^2/2 〖𝑠𝑖𝑛〗^(βˆ’1)⁑〖 π‘₯/π‘Ž+𝑐〗 Replacing a by 4 we get = 3/2 [π‘₯/2 √((4)^2βˆ’π‘₯^2 )+(4)^2/2 sin^(βˆ’1)⁑〖 π‘₯/4γ€— ]_(βˆ’4)^4 = 3/2 [4/2 √((4)^2βˆ’(4)^2 )βˆ’((βˆ’4))/2 √((4)^2βˆ’(βˆ’4)^2 )+16/2 γ€– sinγ€—^(βˆ’1)⁑〖(4/4)βˆ’16/2γ€— sin^(βˆ’1) ((βˆ’4)/4)] = 3/2 [2(0)+2(0)+8 γ€–sin^(βˆ’1) (1)γ€—β‘γ€–βˆ’ 8 sin^(βˆ’1)⁑(βˆ’1) γ€— ] = 3/2 [0+8 sin^(βˆ’1)⁑〖(1)βˆ’8 γ€–π’”π’Šπ’γ€—^(βˆ’πŸ)⁑(βˆ’πŸ) γ€— ] = 3/2 [8 sin^(βˆ’1)⁑〖(1)βˆ’8(βˆ’γ€–π’”π’Šπ’γ€—^(βˆ’πŸ)⁑(𝟏))γ€— ] = 3/2 [8 sin^(βˆ’1)⁑〖(1)+8 sin^(βˆ’1)⁑(1) γ€— ] = 3/2 Γ— 16 γ€–π’”π’Šπ’γ€—^(βˆ’πŸ)⁑(𝟏) = 3/2 Γ— 16 Γ— 𝝅/𝟐 = 3 Γ— 8 Γ— πœ‹/2 = 12Ο€ ∴ Area of Ellipse = 12Ο€ Square units

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo