Misc 7 - Chapter 4 Class 12 Determinants (Important Question)
Last updated at Dec. 16, 2024 by Teachoo
Chapter 4 Class 12 Determinants
Question 9 Important
Question 10 Important
Question 11 Important
Question 7 Important
Question 8 (i) Important
Question 11 (i)
Question 12 Important
Question 13 Important
Question 14 Important
Question 15 (MCQ) Important
Example 7 Important
Ex 4.2, 2 Important
Ex 4.2, 3 (i) Important
Example 13 Important
Example 15 Important
Ex 4.4, 10 Important
Ex 4.4, 15 Important
Ex 4.4, 18 (MCQ) Important
Ex 4.5, 13 Important
Ex 4.5, 15 Important
Ex 4.5, 16 Important
Question 14 Important
Question 15 Important
Question 1 Important
Question 5 Important
Question 9 Important
Misc 7 Important You are here
Misc 9 (MCQ) Important
Chapter 4 Class 12 Determinants
Last updated at Dec. 16, 2024 by Teachoo
Misc 7 Solve the system of the following equations 2/x + 3/y + 10/z = 4 4/x + 6/y + 5/z = 1 6/x + 9/y + 20/z = 2 The system of equations are 2/x + 3/y + 10/z = 4 4/x + 6/y + 5/z = 1 6/x + 9/y + 20/z = 2 Now let 𝟏/𝒙 = u , 𝟏/𝒚 = v , & 𝟏/𝒛 = w The system of equations become 2u + 3v + 10w = 4 4u – 6v + 5w = 1 6u + 9v – 20w = 2 Writing equation as AX = B [■8(2&3&10@4&−6&5@6&9&−20)] [■8(𝑢@𝑣@𝑤)] = [■8(4@1@2)] Hence A = [■8(2&3&10@4&−6&5@6&9&−20)] , X = [■8(𝑢@𝑣@𝑤)] & B = [■8(4@1@2)] Calculating |A| |A| = |■8(2&3&10@4&−6&5@6&9&−20)| = 2 |■8(−6&5@9&−20)| – 3 |■8(4&5@6&−20)| + 10 |■8(4&−6@6&9)| = 2 (120 – 45) –3 (–80 – 30) + 10 ( 36 + 36) = 2 (75) –3 (–110) + 10 (72) = 150 + 330 + 720 = 1200 ∴ |A|≠ 0 So, the system of equation is consistent & has a unique solution Now, AX = B X = A-1 B Calculating A-1 Now, A-1 = 1/(|A|) adj (A) adj (A) = [■8(A11&A12&A13@A21&A22&A23@A31&A32&A33)]^′ = [■8(A11&A21&A31@A12&A22&A32@A13&A23&A33)] A = [■8(2&3&10@4&−6&5@6&9&−20)] M11 = |■8(−6&5@9&−20)| = 120 – 45 = 75 M12 = |■8(4&5@6&−20)| = (–80 – 30) = –110 M13 = |■8(4&−6@6&9)| = 36 –36 = 72 M21 = |■8(3&10@9&−20)| = −60 – 90 = –150 M22 = |■8(2&10@6&−20)| = –40 – 60 = –100 M23 = |■8(2&3@6&9)| = 18 – 18 = 0 M31 = |■8(3&10@−6&5)| = 15 + 60 = 75 M32 = |■8(2&10@4&5)| = 10 – 40 = –30 M33 = |■8(2&3@4&−6)| = –12 – 12 = –24 Now, A11 = 〖"(–1)" 〗^(1+1) M11 = (–1)2 . 75 = 75 A12 = 〖"(–1)" 〗^"1+2" M12 = 〖"(–1)" 〗^3 . (–110) = 110 A13 = 〖(−1)〗^(1+3) M13 = 〖(−1)〗^4 . (72) = 72 A21 = 〖(−1)〗^(2+1) M21 = 〖(−1)〗^3 . (–150) = 150 A22 = 〖(−1)〗^(2+2) M22 = (–1)4 . (–100) = –100 A23 = 〖(−1)〗^(2+3). M23 = 〖(−1)〗^5. 0 = 0 A31 = 〖(−1)〗^(3+1). M31 = 〖(−1)〗^4 . 75 = 75 A32 = 〖(−1)〗^(3+2) . M32 = 〖(−1)〗^5. (–30) = 30 A33 = 〖(−1)〗^(3+3) . M33 = (–1)6 . –24 = –24 Thus, adj A = [■8(75&150&75@110&−110&30@72&0&−24)] Now, A-1 = 1/(|A|) adj A A-1 = 𝟏/𝟏𝟐𝟎𝟎 [■8(𝟕𝟓&𝟏𝟓𝟎&𝟕𝟓@𝟏𝟏𝟎&−𝟏𝟏𝟎&𝟑𝟎@𝟕𝟐&𝟎&−𝟐𝟒)] Also, X = A−1 B Putting Values [■8(𝑢@𝑣@𝑤)]= 1/1200 [■8(75&150&75@110&−110&30@72&0&−24)] [■8(4@1@2)] [■8(𝑢@𝑣@𝑤)]= 1/1200 [■8(75(4)+150(1)+75(4)@110(4)+(−110)(1)+30(1)@72(4)+0(1)+(−24)2)] [■8(𝑢@𝑣@𝑤)] = 1/1200 [■8(300+150+150@440−100+60@288+0−48)] = 1/1200 [■8(600@400@140)] [■8(𝒖@𝒗@𝒘)] = [■8(𝟏/𝟐@𝟏/𝟑@𝟏/𝟓)] Hence u = 1/2 , v = 1/3 , & w = 1/5 Thus, x = 2, y = 3 & z = 5 Putting u = 𝟏/𝒙 1/2 = 1/𝑥 x = 2 Putting v = 𝟏/𝒚 1/3 = 1/𝑦 y = 3 Putting w = 𝟏/𝒛 1/5 = 1/𝑧 z = 5