Question 15 - Examples - Chapter 4 Class 12 Determinants
Last updated at Dec. 16, 2024 by Teachoo
Examples
Example 2
Example 3
Example 4
Example 5 Important
Example 6
Example 7 Important
Example 8
Example 9
Example 10
Example 11 Important
Example 12
Example 13 Important
Example 14
Example 15 Important
Example 16
Example 17 Important
Example 18
Example 19 Important
Question 1
Question 2
Question 3
Question 4 Important
Question 5 Important
Question 6
Question 7
Question 8
Question 9 Important
Question 10 Important
Question 11 Important
Question 12
Question 13 Important
Question 14 Important
Question 15 Important You are here
Last updated at Dec. 16, 2024 by Teachoo
Question 15 Prove that Δ = |■8(a+bx&c+dx&p+qx@ax+b&cx+d&px+q@u&v&w)| = (1 – x2) |■8(a&c&p@b&d&q@u&v&w)| Solving L.H.S Δ = |■8(a+bx&c+dx&p+qx@ax+b&cx+d&px+q@u&v&w)| Applying R1 → R1 − xR2 = |■8(𝑎+𝑏𝑥−𝑥 (𝑎𝑥+𝑏)&𝑐+𝑑𝑥−𝑥&𝑝+𝑞𝑥−𝑥 (𝑝𝑥+𝑞)@𝑎𝑥+𝑏&𝑐𝑥+𝑑&𝑝𝑥+𝑞@𝑢&𝑣&𝑤)| = |■8(𝑎+𝑏𝑥−𝑎𝑥2 −𝑏𝑥&𝑐+𝑑𝑥−𝑐𝑥2−𝑑𝑥&𝑝+𝑞𝑥−𝑝𝑥2−𝑝𝑥@𝑎𝑥+𝑏&𝑐𝑥+𝑑&𝑝𝑥+𝑞@𝑢&𝑣&𝑤)| = |■8(a−𝑎𝑥2 &c−cx2&p−px2@ax+b&cx+d&px+q@u&v&w)| = |■8(a (𝟏−𝒙𝟐) &c(𝟏−𝐱𝟐)&p(𝟏−𝐱𝟐)@ax+b&cx+d&px+q@u&v&w)| Taking (1 – x2) common from R1 = (1 – x2) |■8(a&c&p@ax+b&cx+d&px+q@u&v&w)| Applying R2 → R2 – xR1 = |■8(𝑎+𝑏𝑥−𝑎𝑥2 −𝑏𝑥&𝑐+𝑑𝑥−𝑐𝑥2−𝑑𝑥&𝑝+𝑞𝑥−𝑝𝑥2−𝑝𝑥@𝑎𝑥+𝑏&𝑐𝑥+𝑑&𝑝𝑥+𝑞@𝑢&𝑣&𝑤)| = |■8(a−𝑎𝑥2 &c−cx2&p−px2@ax+b&cx+d&px+q@u&v&w)| = |■8(a (𝟏−𝒙𝟐) &c(𝟏−𝐱𝟐)&p(𝟏−𝐱𝟐)@ax+b&cx+d&px+q@u&v&w)| Taking (1 – x2) common from R1 = (1 – x2) |■8(a&c&p@ax+b&cx+d&px+q@u&v&w)| Applying R2 → R2 – xR1 = (1 – x2) |■8(𝑎&𝑐&𝑝@𝑎𝑥+𝑏−𝑥𝑎&𝑐𝑥+𝑑−𝑐𝑥&𝑝𝑥+𝑞−𝑝𝑥@𝑢&𝑣&𝑤)| = (1 – x2) |■8(𝑎&𝑐&𝑝@𝑏&𝑑&𝑞@𝑢&𝑣&𝑤)| = R.H.S Hence Proved