Question 15 - Chapter 4 Class 12 Determinants (Important Question)
Last updated at Dec. 16, 2024 by Teachoo
Chapter 4 Class 12 Determinants
Question 9 Important
Question 10 Important
Question 11 Important
Question 7 Important
Question 8 (i) Important
Question 11 (i)
Question 12 Important
Question 13 Important
Question 14 Important
Question 15 (MCQ) Important
Example 7 Important
Ex 4.2, 2 Important
Ex 4.2, 3 (i) Important
Example 13 Important
Example 15 Important
Ex 4.4, 10 Important
Ex 4.4, 15 Important
Ex 4.4, 18 (MCQ) Important
Ex 4.5, 13 Important
Ex 4.5, 15 Important
Ex 4.5, 16 Important
Question 14 Important
Question 15 Important You are here
Question 1 Important
Question 5 Important
Question 9 Important
Misc 7 Important
Misc 9 (MCQ) Important
Chapter 4 Class 12 Determinants
Last updated at Dec. 16, 2024 by Teachoo
Question 15 Prove that Δ = |■8(a+bx&c+dx&p+qx@ax+b&cx+d&px+q@u&v&w)| = (1 – x2) |■8(a&c&p@b&d&q@u&v&w)| Solving L.H.S Δ = |■8(a+bx&c+dx&p+qx@ax+b&cx+d&px+q@u&v&w)| Applying R1 → R1 − xR2 = |■8(𝑎+𝑏𝑥−𝑥 (𝑎𝑥+𝑏)&𝑐+𝑑𝑥−𝑥&𝑝+𝑞𝑥−𝑥 (𝑝𝑥+𝑞)@𝑎𝑥+𝑏&𝑐𝑥+𝑑&𝑝𝑥+𝑞@𝑢&𝑣&𝑤)| = |■8(𝑎+𝑏𝑥−𝑎𝑥2 −𝑏𝑥&𝑐+𝑑𝑥−𝑐𝑥2−𝑑𝑥&𝑝+𝑞𝑥−𝑝𝑥2−𝑝𝑥@𝑎𝑥+𝑏&𝑐𝑥+𝑑&𝑝𝑥+𝑞@𝑢&𝑣&𝑤)| = |■8(a−𝑎𝑥2 &c−cx2&p−px2@ax+b&cx+d&px+q@u&v&w)| = |■8(a (𝟏−𝒙𝟐) &c(𝟏−𝐱𝟐)&p(𝟏−𝐱𝟐)@ax+b&cx+d&px+q@u&v&w)| Taking (1 – x2) common from R1 = (1 – x2) |■8(a&c&p@ax+b&cx+d&px+q@u&v&w)| Applying R2 → R2 – xR1 = |■8(𝑎+𝑏𝑥−𝑎𝑥2 −𝑏𝑥&𝑐+𝑑𝑥−𝑐𝑥2−𝑑𝑥&𝑝+𝑞𝑥−𝑝𝑥2−𝑝𝑥@𝑎𝑥+𝑏&𝑐𝑥+𝑑&𝑝𝑥+𝑞@𝑢&𝑣&𝑤)| = |■8(a−𝑎𝑥2 &c−cx2&p−px2@ax+b&cx+d&px+q@u&v&w)| = |■8(a (𝟏−𝒙𝟐) &c(𝟏−𝐱𝟐)&p(𝟏−𝐱𝟐)@ax+b&cx+d&px+q@u&v&w)| Taking (1 – x2) common from R1 = (1 – x2) |■8(a&c&p@ax+b&cx+d&px+q@u&v&w)| Applying R2 → R2 – xR1 = (1 – x2) |■8(𝑎&𝑐&𝑝@𝑎𝑥+𝑏−𝑥𝑎&𝑐𝑥+𝑑−𝑐𝑥&𝑝𝑥+𝑞−𝑝𝑥@𝑢&𝑣&𝑤)| = (1 – x2) |■8(𝑎&𝑐&𝑝@𝑏&𝑑&𝑞@𝑢&𝑣&𝑤)| = R.H.S Hence Proved