Question 14 - Chapter 4 Class 12 Determinants (Important Question)
Last updated at Dec. 16, 2024 by Teachoo
Chapter 4 Class 12 Determinants
Question 9 Important
Question 10 Important
Question 11 Important
Question 7 Important
Question 8 (i) Important
Question 11 (i)
Question 12 Important
Question 13 Important
Question 14 Important You are here
Question 15 (MCQ) Important
Example 7 Important
Ex 4.2, 2 Important
Ex 4.2, 3 (i) Important
Example 13 Important
Example 15 Important
Ex 4.4, 10 Important
Ex 4.4, 15 Important
Ex 4.4, 18 (MCQ) Important
Ex 4.5, 13 Important
Ex 4.5, 15 Important
Ex 4.5, 16 Important
Question 14 Important You are here
Question 15 Important
Question 1 Important
Question 5 Important
Question 9 Important
Misc 7 Important
Misc 9 (MCQ) Important
Chapter 4 Class 12 Determinants
Last updated at Dec. 16, 2024 by Teachoo
Question 14 Show that ฮ = |โ 8((๐ฆ+๐ง)2&๐ฅ๐ฆ&๐ง๐ฅ@๐ฅ๐ฆ&(๐ฅ+๐ง)2&๐ฆ๐ง@๐ฅ๐ง&๐ฆ๐ง&(๐ฅ+๐ฆ)2)| = 2xyz (x + y + z)3 Solving L.H.S ฮ = |โ 8((๐ฆ+๐ง)^2&๐ฅ๐ฆ&๐ง๐ฅ@๐ฅ๐ฆ&(๐ฅ+๐ง)2&๐ฆ๐ง@๐ฅ๐ง&๐ฆ๐ง&(๐ฅ+๐ฆ)2)| Divide & Multiply by xyz = ๐ฅ๐ฆ๐ง/๐ฅ๐ฆ๐ง |โ 8((๐ฆ+๐ง)2&๐ฅ๐ฆ&๐ง๐ฅ@๐ฅ๐ฆ&(๐ฅ+๐ง)2&๐ฆ๐ง@๐ฅ๐ง&๐ฆ๐ง&(๐ฅ+๐ฆ)2)| = 1/๐ฅ๐ฆ๐ง x. y. z |โ 8((๐ฆ+๐ง)2&๐ฅ๐ฆ&๐ง๐ฅ@๐ฅ๐ฆ&(๐ฅ+๐ง)2&๐ฆ๐ง@๐ฅ๐ง&๐ฆ๐ง&(๐ฅ+๐ฆ)2)| Multiplying R1 by x , R2 by y & R3 by z = 1/๐ฅ๐ฆ๐ง |โ 8(๐(๐ฆ+๐ง)2&๐(๐ฅ๐ฆ)&๐(๐ง๐ฅ)@๐(๐ฅ๐ฆ)&๐(๐ฅ+๐ง)2&๐(๐ฆ๐ง)@๐(๐ฅ๐ง)&๐ฆ๐2&๐(๐ฅ+๐ฆ)2)| Taking out x common from C1, y common from C2 & z common from C3 = ๐ฅ๐ฆ๐ง/๐ฅ๐ฆ๐ง |โ 8((๐ฆ+๐ง)2&๐ฅ2&๐ฅ2@๐ฆ2&(๐ฅ+๐ง)2&๐ฆ2@๐ง2&๐ง2&(๐ฅ+๐ฆ)2)| Applying C2 โ C2 โ C1 = |โ 8((๐ฆ+๐ง)2&๐ฅ2โ(๐ฆ+๐ง)2&๐ฅ2@๐ฆ2&(๐ฅ+๐ง)2โ๐ฆ2&๐ฆ2@๐ง2&๐ง2โ๐ง2&(๐ฅ+๐ฆ)2)| = |โ 8((๐ฆ+๐ง)2&(๐ฅโ(๐ฆ+๐ง))(๐ฅ+(๐ฆ+๐ง))&๐ฅ2@๐ฆ2&((๐ฅ+๐ง)โ๐ฆ)(๐ฅ+๐ง+๐ฆ)&๐ฆ2@๐ง2&0&(๐ฅ+๐ฆ)2)| = |โ 8((๐ฆ+๐ง)2&(๐ฅโ๐ฆโ๐ง)(๐+๐+๐)&๐ฅ2@๐ฆ2&(๐ฅ+๐งโ๐ฆ)(๐+๐+๐)&๐ฆ2@๐ง2&0&(๐ฅ+๐ฆ)2)| Taking out (๐+๐+๐) common from C2 = (๐ฅ+๐ฆ+๐ง)|โ 8((y+z)2&๐ฅโ๐ฆโ๐ง&x2@y2&๐ฅ+๐งโ๐ฆ&y2@๐ง2&0&(x+y)2)| Applying C3 โ C3 โ C1 = (๐ฅ+๐ฆ+๐ง)|โ 8((y+z)2&๐ฅโ๐ฆโ๐ง&๐ฅ2 โ(๐ฆ+๐ง)2@y2&๐ฅ+๐งโ๐ฆ&๐ฆ2โ๐ฆ2@๐ง2&0&(๐ฅ+๐ฆ)2โ๐ง2)| = (๐ฅ+๐ฆ+๐ง)|โ 8((y+z)2&๐ฅโ๐ฆโ๐ง&(๐+๐+๐)(๐ฅโ(๐ฆ+๐ง))@y2&๐ฅ+๐งโ๐ฆ&0@๐ง2&0&(๐+๐+๐)((๐ฅ+๐ฆ)โ๐ง))| Taking out (๐+๐+๐) Common from C3 = (๐ฅ+๐ฆ+๐ง)(๐ฅ+๐ฆ+๐ง)|โ 8((y+z)2&๐ฅโ๐ฆโ๐ง&๐ฅโ๐ฆโ๐ง@y2&๐ฅ+๐งโ๐ฆ&0@๐ง2&0&๐ฅ+๐ฆโ๐ง)| = (๐ฅ+๐ฆ+๐ง)2 |โ 8((y+z)2&๐ฅโ๐ฆโ๐ง&๐ฅโ๐ฆโ๐ง@y2&๐ฅ+๐งโ๐ฆ&0@๐ง2&0&๐ฅ+๐ฆโ๐ง)| Applying R1โ R1 โ R2 โ R3 = (๐ฅ+๐ฆ+๐ง)2|โ 8((y+z)2โ๐ฆ2โ๐ง2&(๐ฅโ๐ฆโ๐ง)โ(๐ฅ+๐งโ๐ฆ)โ0&(๐ฅโ๐ฆโ๐ง)โ0โ(๐ฅ+๐ฆโ๐ง)@y2&๐ฅ+๐งโ๐ฆ&0@๐ง2&0&๐ฅ+๐ฆโ๐ง)| = (๐ฅ+๐ฆ+๐ง)2|โ 8(๐ฆ2+๐ง2+2๐ฆ๐งโ๐ฆ2โ๐ง2&๐ฅโ๐ฅโ๐ฆ+๐ฆโ๐งโ๐ง&๐ฅโ๐ฅโ๐ฆโ๐ฆโ๐ง+๐ง@y2&๐ฅ+๐งโ๐ฆ&0@๐ง2&0&๐ฅ+๐ฆโ๐ง)| = (๐ฅ+๐ฆ+๐ง)2|โ 8(2๐ฆ๐ง&โ2๐ง&โ2๐ฆ@y2&๐ฅ+๐งโ๐ฆ&0@๐ง2&0&๐ฅ+๐ฆโ๐ง)| Applying C2โ C2 + ๐/๐ C1 = (๐ฅ+๐ง+๐ฆ)2|โ 8(2๐ฆ๐ง&โ2๐ง+๐/๐(๐๐๐)&2๐ฆ@y2&xโ๐ฆ+๐ง+๐/๐ (๐๐)&0@๐ง2&0+๐/๐(๐๐)&๐ฅ+๐ฆโ๐ง)| = (๐ฅ+๐ง+๐ฆ)2|โ 8(2๐ฆ๐ง&0&2๐ฆ@y2&x+๐ง&0@๐ง2&๐ง^2/๐ฆ&๐ฅ+๐ฆโ๐ง)| Applying C3โ C3 + ๐/๐ C1 = (๐ฅ+๐ฆ+๐ง)2|โ 8(2๐ฆ๐ง&0&โ2๐ฆ+๐/๐(๐๐๐)@y2&๐ฅ+๐ง&0+๐/๐ (๐๐)@๐ง2&๐ง^2/๐ฆ&(๐ฅ+๐ฆโ๐ง)+๐/๐ (๐๐))| = (๐ฅ+๐ฆ+๐ง)2|โ 8(2๐ฆ๐ง&0&0@y2&๐ฅ+๐ง&๐ฆ^2/๐ง @๐ง2&๐ง^2/๐ฆ&๐ฅ+๐ฆ)| Expanding Determinant along R1 = (๐ฅ+๐ฆ+๐ง)2(2๐ฆ๐ง|โ 8(๐ฅ+๐ง&๐ฆ^2/๐ง@๐ง^2/๐ฆ&๐ฅ+๐ฆ)|โ0|โ 8(๐ฆ2&๐ฆ^2/๐ง@๐ง^2&๐ฅ+๐ฆ)|+0|โ 8(๐ฆ2&๐ฅ+๐ฆ@๐ง^2&๐ง^2/๐ฆ)|) = (๐ฅ+๐ฆ+๐ง)2(2๐ฆ๐ง|โ 8(๐ฅ+๐ง&๐ฆ^2/๐ง@๐ง^2/๐ฆ&๐ฅ+๐ฆ)|โ0+0) = (๐ฅ+๐ฆ+๐ง)2 ("2yz " ("(x + z) (x + y) โ " ๐ง2/๐ฆ " " (๐ฆ2/๐ง))" โ 0 + 0" ) = (๐ฅ+๐ฆ+๐ง)2 (2yz ((x + z) (x + y) โ zy ) = (๐ฅ+๐ฆ+๐ง)2 (2yz) ((x + z) (x + y) โ zy ) = (๐ฅ+๐ฆ+๐ง)2 (2yz) (x2 + xy + zx + zy โ zy) = (๐ฅ+๐ฆ+๐ง)2 (2yz) (x2 + xy + xz) = (๐ฅ+๐ฆ+๐ง)2 (2yz) . x (x + y + z) = (๐ฅ+๐ฆ+๐ง)3 (2xyz) = (2xyz) (๐ฅ+๐ฆ+๐ง)^3 = R.H.S Hence Proved