Question 13 - Examples - Chapter 4 Class 12 Determinants
Last updated at Dec. 16, 2024 by Teachoo
Examples
Example 2
Example 3
Example 4
Example 5 Important
Example 6
Example 7 Important
Example 8
Example 9
Example 10
Example 11 Important
Example 12
Example 13 Important
Example 14
Example 15 Important
Example 16
Example 17 Important
Example 18
Example 19 Important
Question 1
Question 2
Question 3
Question 4 Important
Question 5 Important
Question 6
Question 7
Question 8
Question 9 Important
Question 10 Important
Question 11 Important
Question 12
Question 13 Important You are here
Question 14 Important
Question 15 Important
Last updated at Dec. 16, 2024 by Teachoo
Question 13 (Method 1) If a, b, c, are in A.P, find value of |■8(2y+4&5y+7&8y+a@3y+5&6y+8&9y+b@4y+6&7y+9&10y+c)| Given a, b & c are in A.P Then, b – a = c – b b – a – c + b = 0 2b – a – c = 0 Solving (Common difference is equal) |■8(2y+4&5y+7&8y+a@3y+5&6y+8&9y+b@4y+6&7y+9&10y+c)| Multiply & Divide by 2 = 2/2 |■8(2y+4&5y+7&8y+a@3y+5&6y+8&9y+b@4y+6&7y+9&10y+c)| Multiplying 2 to R2 = 1/2 |■8(2y+4&5y+7&8y+a@𝟐(3y+5)&𝟐(6y+8)&𝟐(9y+b)@4y+6&7y+9&10y+c)| = 1/2 |■8(2y+4&5y+7&8y+a@6y+10&12y+16&18y+2b@4y+6&7y+9&10y+c)| Applying R2 →R2 – R1 – R3 = 1/2 |■8(2y+4&5y+7&8y+a@6y+10−(2𝑦+4)−(4𝑦+6)&12y+16−(5𝑦+7)−(7𝑦+9)&18y+2b−(8y+a)−(10y+c)@4y+6&7y+9&10y+c)| = 1/2 |■8(2y+4&5y+7&8y+a@6y+10−2𝑦−4−4𝑦−6&12y+16−5𝑦−7−7𝑦−9&18y+2b−2𝑦−𝑎−10𝑦−𝑐@4y+6&7y+9&10y+c)| = 1/2 |■8(2𝑦+4&5𝑦+7&8𝑦+𝑎@0&0&𝟐𝒃−𝒂−𝒄@4𝑦+6&7𝑦+9&10𝑦+𝑐)| = 1/2 |■8(2𝑦+4&5𝑦+7&8𝑦+𝑎@0&0&𝟎@4𝑦+6&7𝑦+9&10𝑦+𝑐)| = 1/2 × 0 = 0 Thus, the value of determinant is 0 (From (1): 2b – a – c = 0) If any row or column of determinant are zero, then value of determinant is also zero. Question 13 (Method 2) If a, b, c, are in A.P, find value of |■8(2𝑦+4&5𝑦+7&8𝑦+𝑎@3𝑦+5&6𝑦+8&9𝑦+𝑏@4𝑦+6&7𝑦+9&10𝑦+𝑐)| Given a, b & C are in A.P Then b – a = c – b b + b = a + c 2b = a + c (Common difference is equal) Consider |■8(2𝑦+4&5𝑦+7&8𝑦+𝑎@3𝑦+5&6𝑦+8&9𝑦+𝑏@4𝑦+6&7𝑦+9&10𝑦+𝑐)| Applying R1 → R1 + R3 – 2R2 = |■8(2𝑦+4+(4𝑦+6)−2(3𝑦+5)&5𝑦+7+(7𝑦+9)−2(6𝑦+8)&8𝑦+𝑎+(10𝑦+𝑐)−2(9𝑦+𝑏)@3𝑦+5&6𝑦+8&9𝑦+𝑏@4𝑦+6&7𝑦+9&10𝑦+𝑐)| = |■8(2𝑦+4+4𝑦+6−6𝑦−10&5𝑦+7+7𝑦+9−12𝑦−16&8𝑦+𝑎+10𝑦+𝑐−18𝑦−2𝑏@3𝑦+5&6𝑦+8&9𝑦+𝑏@4𝑦+6&7𝑦+9&10𝑦+𝑐)| = |■8(6𝑦−6𝑦+10−10&12𝑦−12𝑦+16−16&18𝑦−18𝑦+𝑎+𝑐−2𝑏@3𝑦+5&6𝑦+8&9𝑦+𝑏@4𝑦+6&7𝑦+9&10𝑦+𝑐)| = |■8(0&0&𝒂+𝒄−2𝑏@3𝑦+5&6𝑦+8&9𝑦+𝑏@4𝑦+6&7𝑦+9&10𝑦+𝑐)| = |■8(0&0&𝟐𝒃−2𝑏@3𝑦+5&6𝑦+8&9𝑦+𝑏@4𝑦+6&7𝑦+9&10𝑦+𝑐)| = |■8(0&0&0@3𝑦+5&6𝑦+8&9𝑦+𝑏@4𝑦+6&7𝑦+9&10𝑦+𝑐)| If any row or column of determinant are zero, then value of determinant is also zero. = 0 Hence, value of determinant is 0 (From (1): 2b = a + c)