Slide54.JPG

Slide55.JPG
Slide56.JPG
Slide57.JPG
Slide58.JPG Slide59.JPG Slide60.JPG

Go Ad-free

Transcript

Example 18 The sum of three numbers is 6. If we multiply third number by 3 and add second number to it, we get 11. By adding first and third numbers, we get double of the second number. Represent it algebraically and find the numbers using matrix method.Let the first, second & third number be x, y, z respectively Given, x + y + z = 6 y + 3z = 11 x + z = 2y or x − 2y + z = 0 Step 1 Write equation as AX = B [■8(1&1&1@0&1&3@1&−2&1)] [■8(𝑥@𝑦@𝑧)] = [■8(6@11@0)] Hence A = [■8(1&1&1@0&1&3@1&−2&1)], X = [■8(𝑥@𝑦@𝑧)] & B = [■8(6@11@0)] Step 2 Calculate |A| |𝐴| = |■8(1&1&1@0&1&3@1&−2&1)| = 1 (1 + 6) − 0 (1 + 2) + 1 (3 − 1) = 7 + 2 = 9 So, |A|≠ 0 ∴ The system of equation is consistent & has a unique solutions Now, AX = B X = A-1 B Hence A = [■8(1&1&1@0&1&3@1&−2&1)], X = [■8(𝑥@𝑦@𝑧)] & B = [■8(6@11@0)] = 1 (1 + 6) − 0 (1 + 2) + 1 (3 − 1) = 7 + 2 = 9 ≠ 0 Since determinant is not equal to O, A−1 exists Now find adj (A) adj (A) = [■8(𝐴11&𝐴12&𝐴13@𝐴21&𝐴22&𝐴23@𝐴31&𝐴32&𝐴33)] = [■8(𝐴11&𝐴21&𝐴31@𝐴12&𝐴22&𝐴32@𝐴13&𝐴32&𝐴33)] Now, AX = B X = A-1 B Step 3 Calculating X = A-1 B Calculating A-1 Now, A-1 = 1/(|A|) adj (A) adj A = [■8(A11&A12&A13@A21&A22&A23@A31&A32&A33)]^′ = [■8(A11&A21&A31@A12&A22&A32@A13&A23&A33)] A = [■8(1&−1&2@3&4&−5@2&−1&3)] 𝐴11 = 1 × 1 − 3 × (−2) = 1 + 6 = 7 𝐴12 = − [0×1−3×1] = − (−3) = 3 𝐴13 = − 0×(−2)−1×1=−1= 𝐴21 = [1×1−(−2)×1] = −[1+2] = −3 𝐴22 = 1 × 1 − 1 × 1 = 1 − 1 = 0 𝐴23 = [1×(−2)−1×1] = − [−2−1] = −(−3) = 3 𝐴31 = 1 × 3 − 1 × 1 = 3 − 1 = 2 𝐴32 = −[1×3−0×1] = −[3−0] = −3 𝐴33 = 1 × 1 − 1 × 0 = 1 − 0 = 1 Hence, adj (A) = [■8(𝟕&−𝟑&𝟐@𝟑&𝟎&−𝟑@−𝟏&𝟑&𝟏)] Now, A−1 = 1/|𝐴| adj (A) A−1 = 𝟏/𝟗 [■8(𝟕&−𝟑&𝟐@𝟑&𝟎&−𝟑@−𝟏&𝟑&𝟏)]" " Solution of given system of equations is X = A−1 B [■8(𝒙@𝒚@𝒛)] = 𝟏/𝟗 [■8(𝟕&−𝟑&𝟐@𝟑&𝟎&−𝟑@−𝟏&𝟑&𝟏)]" " [■8(𝟔@𝟏𝟏@𝟎)] [■8(𝑥@𝑦@𝑧)] = 1/9 [█(42−33+0@18+0+0@−6+33+0)]" " [■8(𝑥@𝑦@𝑧)] = 1/9 [■8(9@18@27)] [■8(𝒙@𝒚@𝒛)] = [■8(𝟏@𝟐@𝟑)] ∴ x = 1, y = 2, z = 3

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo