Example 17 - Chapter 4 Class 12 Determinants
Last updated at Dec. 16, 2024 by Teachoo
Examples
Example 2
Example 3
Example 4
Example 5 Important
Example 6
Example 7 Important
Example 8
Example 9
Example 10
Example 11 Important
Example 12
Example 13 Important
Example 14
Example 15 Important
Example 16
Example 17 Important You are here
Example 18
Example 19 Important
Question 1
Question 2
Question 3
Question 4 Important
Question 5 Important
Question 6
Question 7
Question 8
Question 9 Important
Question 10 Important
Question 11 Important
Question 12
Question 13 Important
Question 14 Important
Question 15 Important
Last updated at Dec. 16, 2024 by Teachoo
Example 17 Solve the following system of equations by matrix method. 3x – 2y + 3z = 8 2x + y – z = 1 4x – 3y + 2z = 4 The system of equation is 3x – 2y + 3z = 8 2x + y – z = 1 4x – 3y + 2z = 4 Writing equation as AX = B [■8(𝟑&−𝟐&𝟑@𝟐&𝟏&−𝟏@𝟒&−𝟑&𝟐)][■8(𝒙@𝒚@𝒛)] = [■8(𝟖@𝟏@𝟒)] Hence A = [■8(3&−2&3@2&1&−1@4&−3&2)], 𝑥= [■8(𝑥@𝑦@𝑧)] & B = [■8(8@1@4)] Calculating |A| |A| = |■8(3&−2&3@2&1&−1@4&−3&2)| = 3 |■8(1&−1@−3&2)| – 1( – 2) |■8(2&−1@4&2)| + 3 |■8(2&1@4&−3)| = 3 (2 – 3) – 2 (4 + 4) + 3 (–6 – 4) = 3 (–1) + 2(8) + 3 (–10) = –3 + 16 – 30 = –17 Since, |A| ≠ 0 ∴ System of equation is consistent & has a unique solution Now, AX = B X = A-1 B Calculating A-1 A-1 = 1/(|A|) adj (A) adj (A) = [■8(A_11&A_12&A_13@A_21&A_22&A_23@A_31&A_32&A_33 )]^′ = [■8(A_11&A_21&A_13@A_12&A_22&A_23@A_13&A_32&A_33 )] A = [■8(3&−2&3@2&1&−1@4&−3&2)] M11 = |■8(1&−1@−3&2)| = 2 – 3 = –1 M12 = |■8(2&−1@4&2)| = 4 + 4 = 8 M13 = |■8(2&1@4&−3)| = –6 – 4 = –10 M21 = |■8(−2&3@−3&2)| = –4 + 9 = 5 M22 = |■8(3&3@4&2)| = 6 – 12 = – 6 M23 = |■8(3&−2@4&−3)| = –9 + 8 = –1 M31 = |■8(−2&3@1&−1)| = 1 – 2 = –1 M32 = |■8(3&3@2&−1)| = –3 – 6 = –9 M33 = |■8(3&−2@2&1)| = 3 + 4 = 7 Now, A11 = (–1)1+1 . M11 = (–1)2 . (–1) = –1 A12 = (–1)1+2 . M12 = (–1)3 . 8 = –8 A13 = (–1)1+3 . M13 = (–1)4 . ( –10) = –10 A21 = (–1)2+1 . M21 = (–1)3 . (5) = –5 A22 = (–1)2+2 . M22 = (–1)4 . (–6) = –6 A23 = (–1)2+3 . ( – 1) = (–1)5 . (–1) = 1 A31 = (–1)3+1 . M31 = (–1)4 . (–1) = –1 A32 = (–1)3+2 . M32 = (–1)5 . (–9) = 9 A33 = (–1)3+3 . M33 = (–1)6 . 7 = 7 Thus, adj (A) =[■8(−𝟏&−𝟓&−𝟏@−𝟖&−𝟔&𝟗@−𝟏𝟎&𝟏&𝟕)] Now, A-1 = 1/(|A|) adj A Putting values = 𝟏/(−𝟏𝟕) [■8(−𝟏&−𝟓&−𝟏@−𝟖&−𝟔&𝟗@−𝟏𝟎&𝟏&𝟕)] Also, X = A-1 B Putting values [█(■8(𝒙@𝒚)@𝒛)] = 𝟏/(−𝟏𝟕) [■8(−𝟏&−𝟓&−𝟏@−𝟖&−𝟔&𝟗@−𝟏𝟎&𝟏&𝟕)][█(■8(𝟖@𝟏)@𝟒)] [█(■8(𝑥@𝑦)@𝑧)] = 1/(−17) [■8(−1(8)+(−5)(1)+(−1)4@−8(8)+(−6)(1)+9(4)@−10(8)+1(1)+7(4) )] [█(■8(𝑥@𝑦)@𝑧)] = 1/(−17) [■8(−8&−5&−5@−64&−6&+36@−80&+1&+28)] [█(■8(𝒙@𝒚)@𝒛)] = 𝟏/(−𝟏𝟕) [█(■8(−𝟏𝟕@−𝟑𝟔)@−𝟓𝟏)] [█(■8(𝑥@𝑦)@𝑧)] = [█(■8((−17)/(−17)@(−34)/(−(17)))@(−51)/(−17))] [█(■8(𝒙@𝒚)@𝒛)] = [█(■8(𝟏@𝟐)@𝟑)] Hence x = 1, y = 𝟐 & z = 3