Example 11 - Chapter 4 Class 12 Determinants
Last updated at April 16, 2024 by Teachoo
Examples
Example 2
Example 3
Example 4
Example 5 Important
Example 6
Example 7 Important
Example 8
Example 9
Example 10
Example 11 Important You are here
Example 12
Example 13 Important
Example 14
Example 15 Important
Example 16
Example 17 Important
Example 18
Example 19 Important
Question 1
Question 2
Question 3
Question 4 Important
Question 5 Important
Question 6
Question 7
Question 8
Question 9 Important
Question 10 Important
Question 11 Important
Question 12
Question 13 Important
Question 14 Important
Question 15 Important
Last updated at April 16, 2024 by Teachoo
Example 11 Find minors and cofactors of the elements of the determinant |■8(2&−3&5@6&0&4@1&5&−7)| and verify that a11 A31 + a12 A32 + a13 A33 = 0 First, finding minors and cofactors Minor of a11 = M11 = |■8(2&−3&5@6&0&4@1&5&−7)| = |■8(0&4@5&−7)| = 0 – 5(4) = −20 Minor of a12 = M12 =|■8(2&−3&5@6&0&4@1&5&−7)| = |■8(6&4@1&−7)| = 6(-7) – 1(4) = − 46 Minor of a13 = M13 = |■8(2&−3&5@6&0&4@1&5&−7)| = |■8(6&0@1&5)| = 6(5) – 0 = 30 Minor of a21 = M21 = |■8(2&−3&5@6&0&4@1&5&−7)| =|■8(−3&5@5&−7)| = (−3)(−7) – 5(5) = − 4 Minor of a22 = M22= |■8(2&−3&5@6&0&4@1&5&−7)| = |■8(2&5@1&−7)| = 2(−7) – 1(5) = −19 Minor of a23 = M23 = |■8(2&−3&5@6&0&4@1&5&−7)| = |■8(2&−3@1&5)| = 10 – 1(-3) = 13 Minor of a31 = M31 = |■8(2&−3&5@6&0&4@1&5&−7)| = |■8(−3&5@0&4)| = −3(4) – 0 = – 12 Minor of a32= M32 = |■8(2&−3&5@6&0&4@1&5&−7)|= |■8(2&5@6&4)|= 2(4) – 6(5) = −22 Minor of a33 = M33 = |■8(2&−3&5@6&0&4@1&5&−7)| = |■8(2&−3@6&0)| = 2(0) – 6(−3) = 18 Cofactor of a11 = C11 = ( – 1)1+1 M11 = ( – 1)2 × −20 = 1 × −20 = −20 Cofactor of a12 = A12 = ( – 1)1+2 M12 = ( – 1)3 . (-46) = ( – 1) (-46) = 46 Cofactor of a13 = A13 = ( – 1)1+3 M13 = ( – 1)4 . 30 = (1) 30 = 30 Cofactor of a21 = A21 = ( – 1)2+1 M21 = ( – 1)3 . ( – 4) = ( – 1) ( – 4) = 4 Cofactor of a22 = A22 = (– 1)2+2 M22 = (– 1)4 . (−19) = (1) . (−19) = −19 Cofactor of a23 = A23 = ( – 1)2 + 3 M23= ( – 1)5 (13) = ( – 1) (13) = – 13 Cofactor of a31 = A31= (– 1)3 + 1 M31 = (– 1)4 (– 12) = 1 . (– 12) = – 12 Cofactor of a32 = A32 = ( – 1)3 + 2 M32 = (– 1)5 . (– 22) = (– 1) (– 22) = 22 Cofactor of a33 = A33 = ( – 1)3 + 3 M33 = ( – 1)6 . (18) = (1) . (18) = 18 Now for |■8(2&−3&5@6&0&4@1&5&−7)| We need to verify a11 A31 + a12 A32 + a13 A33 = 0 SolvingL.H.S Here, a11 = 2 , A31 = − 12 a12 = −3 , A32 = 22 a13 = 5 , A33 = 18 Putting values a11 A31 + a12 A32 + a13 A33 = 2(− 12) + (−3) (22) + 5 (18) = −24 −66 + 90 = −90 + 90 = 0 Hence Verified