Example 7 - Chapter 4 Class 12 Determinants (Important Question)
Last updated at Dec. 16, 2024 by Teachoo
Chapter 4 Class 12 Determinants
Question 9 Important
Question 10 Important
Question 11 Important
Question 7 Important
Question 8 (i) Important
Question 11 (i)
Question 12 Important
Question 13 Important
Question 14 Important
Question 15 (MCQ) Important
Example 7 Important You are here
Ex 4.2, 2 Important
Ex 4.2, 3 (i) Important
Example 13 Important
Example 15 Important
Ex 4.4, 10 Important
Ex 4.4, 15 Important
Ex 4.4, 18 (MCQ) Important
Ex 4.5, 13 Important
Ex 4.5, 15 Important
Ex 4.5, 16 Important
Question 14 Important
Question 15 Important
Question 1 Important
Question 5 Important
Question 9 Important
Misc 7 Important
Misc 9 (MCQ) Important
Chapter 4 Class 12 Determinants
Last updated at Dec. 16, 2024 by Teachoo
Example 7 Find the equation of the line joining A(1, 3) and B(0, 0) using determinants and find k if D(k, 0) is a point such that area of triangle ABD is 3 sq units. Equation of line Let L be the line joining the A(1, 3) & B(0, 0) Let (x, y) be the third point on line Since all the three points lie on the same line, they do not from a triangle Hence, Area of triangle = 0 Thus, ∆ = 0 We know that Area of triangle is given by ∆ = 1/2 |■8(x1&y1&1@x2&y2&1@x3&y3&1)| Here, ∆ = 0 x1 = x , y1 = y x2 = 1 , y2 = 3 x3 = 0 , y3 = 0 Putting values 0 = 1/2 |■8(𝑥&𝑦&1@1&3&1@0&0&1)| 0 = 1/2 (𝑥|■8(3&1@0&1)|−𝑦|■8(1&1@0&1)|+1|■8(1&3@0&0)|) 0 = 1/2 ( x (3 – 0) – y (1 – 0) +1 (0 – 0)) 0 = 1/2 (x (3) – y (1) + 0) 0 = 1/2 (3x – y) 2 × 0 = 3x – y 0 = 3x – y 3x – y = 0 y = 3x Thus, the equation of line joining A & B is y = 3x Also given a point D (k, 0) & Area of triangle ∆ ABD is 3 square unit Since, Area of triangle is always positive , ∆ can have both positive and negative sings ∴ ∆ = ± 3 We have A (1, 3) : x1 = 1, y1 = 3 B (0, 0) : x2 = 0, y2 = 0 D (k, 0) : x3 = k , y3 = 0 Area of triangle is ∆ = 1/2 |■8(x1&y1&1@x2&y2&1@x3&y3&1)| ± 3 = 1/2 |■8(1&3&1@0&0&1@k&0&1)| ± 3 = 1/2 (1|■8(0&1@0&1)|−3|■8(0&1@k&1)|+1|■8(0&0@k&0)|) ± 3 = 1/2 ( 1 (0 – 0) – 3 (k – 0) +1 (0 – 0)) ±3 = 1/2 (0 – 3 (k) + 0) ±3 = 1/2 ( –3k) ± 6 = –3k So, 6 = –3k or –6 = –3k 6 = –3k 3k = 6 k = 6/(−3) = –2 –6 = – 3k –3k = –6 k = (−6)/(−3) = 2 Hence, the value of k is 2 or –2