Slide42.JPG

Slide43.JPG
Slide44.JPG
Slide45.JPG
Slide46.JPG Slide47.JPG Slide48.JPG Slide49.JPG

Go Ad-free

Transcript

Ex 4.5, 12 Solve system of linear equations, using matrix method. x − y + z = 4 2x + y − 3z = 0 x + y + z = 2 The system of equations is x − y + z = 4 2x + y − 3z = 0 x + y + z = 2 Step 1 Write equation as AX = B [■8(1&−1&1@2&1&−3@1&1&1)] [■8(𝑥@𝑦@𝑧)] = [■8(4@0@2)] Hence A = [■8(1&−1&1@2&1&−3@1&1&1)] , X = [■8(𝑥@𝑦@𝑧)] & B = [■8(4@0@2)] Step 2 Calculate |A| |A| = |■8(1&−1&1@2&1&−3@1&1&1)| = 1 |■8(1&−3@1&1)| – ( –1) |■8(2&−3@1&1)| + 1 |■8(2&1@1&1)| = ( 1 + 3) + 1 ( 2 + 3) + 1 (2 – 1) = 1 (4) + 1 (5) + 1 (1) = 4 + 5 + 1 = 10 Since |A|≠ 0 ∴ The system of equation is consistent & has a unique solution Now, AX = B X = A-1 B Step 3 Calculate X = A-1 B Calculating A-1 Now, A-1 = 1/(|A|) adj (A) adj A = [■8(A11&A12&A13@A21&A22&A23@A31&A32&A33)]^′ = [■8(A11&A21&A31@A12&A22&A32@A13&A23&A33)] A = [■8(1&−1&1@2&1&−3@1&1&1)] M11 = [■8(1&−3@1&1)] = 1 + 3 = 4 M12 = |■8(2&−3@1&1)| = 2 + 3 = 5 M13 = |■8(2&1@1&1)| = 2 – 1 = 1 M21 = |■8(−1&1@1&1)| = −1 – 1 = – 2 M22 = |■8(1&1@1&1)| = 1 – 1 = 0 M23 = |■8(1&−1@1&1)| = 1 + 1 = 2 M31 = |■8(−1&1@1&−3)| = 3 – 1 = 2 M32 = |■8(1&1@2&−3)| = –3 – 4 = – 5 M33 = |■8(1&−1@2&1)| = 3 + 2 = 3 A11 = 〖"(–1)" 〗^(1+1) M11= (–1)2 . 4 = 4 A12 = 〖"(–1)" 〗^"1+2" M12 = 〖"( –1)" 〗^"3" . 5 = – 5 A13 = 〖(−1)〗^(1+3) M13= 〖( −1)〗^4 . (1) = 1 A21 = (−1)^(2+1) M21= 〖( −1)〗^3 . (-2) = 2 A22 = 〖(−1)〗^(2+2) M22 = ( –1)4 . 0 = 0 A23 = 〖(−1)〗^(2+3). M23 = 〖(−1)〗^5. ( 2) = – 2 A31 = 〖(−1)〗^(3+1). M31 = 〖(−1)〗^4 . (2) = 2 A32 = 〖(−1)〗^(3+2) . M32 = 〖(−1)〗^5. ( – 5) = 5 A33 = 〖(−1)〗^(3+3) . M33 = ( –1)6 . 3 = 3 Thus , adj A = [■8(4&2&2@−5&0&5@1&−2&3)] & |A| = 10 So, A-1 = 1/(|A|) adj A A-1 = 1/10 [■8(4&2&2@−5&0&5@1&−2&3)] & B = [■8(4@0@2)] Now, solving X = A-1 B [■8(𝑥@𝑦@𝑧)] = 1/10 [■8(4&2&2@−5&0&5@1&1&3)] [■8(4@0@2)] = 1/10 [■8(4(4)+2(0)+2(2)@0(4)+0(0)+5(2)@2(4)+1(0)+3(2))] [■8(𝑥@𝑦@𝑧)] = 1/10 [■8(16+0+4@−20+0+10@4+0+6)] = 1/10 [■8(20@−10@10)] [■8(𝑥@𝑦@𝑧)] = [■8(2@−1@1)] Hence, x = 2 , y = –1, & z = 1

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo