Slide35.JPG

Slide36.JPG
Slide37.JPG
Slide38.JPG
Slide39.JPG Slide40.JPG Slide41.JPG

Go Ad-free

Transcript

Ex 4.5, 11 Solve system of linear equations, using matrix method. 2x + y + z = 1 x – 2y – z = 3/2 3y – 5z = 9 The system of equation is 2x + y + z = 1 x – 2y – z = 3/2 3y – 5z = 9 Writing above equation as AX = B [■8(2&1&1@1&−2&−1@0&3&−5)][■8(𝑥@𝑦@𝑧)] = [■8(1@3/2@9)] Hence A = [■8(2&1&1@1&−2&−1@0&3&−5)]𝑥= [■8(𝑥@𝑦@𝑧)] & B = [■8(1@3/2@9)] Calculating |A| |A| = |■8(2&1&1@1&−2&−1@0&3&−5)| = 2 |■8(−2&−1@3&−5)| – 1 |■8(1&−1@0&−5)| + 1 |■8(1&−2@0&3)| = 2 (10 + 3 ) – 1(–5 + 0) + 1 (3 – 0) = 2 (13) –1 ( – 5 ) + 1 (3) = 34 Thus, |A| ≠ 0 ∴ The system of equation is consistent & has a unique solution Now, AX = B X = A-1 B Calculating A-1 A-1 = 1/(|A|) adj (A) adj (A) = [■8(A_11&A_12&A_13@A_21&A_22&A_23@A_31&A_32&A_33 )]^′ = [■8(A_11&A_21&A_31@A_12&A_22&A_23@A_13&A_32&A_33 )] A = [■8(2&1&1@1&−2&−1@0&3&−5)] M11 = [■8(−2&−1@3&−5)] = 10 + 3 = 13 M12 = [■8(1&−1@0&−5)] = –5 + 0 = –5 M13 = [■8(1&−2@0&3)] = 3 + 0 = 3 M21 = [■8(1&1@3&−5)] = –5 – 3 = –8 M22 = [■8(2&1@0&−5)] = –10 + 0 = –10 M23 = [■8(2&1@0&3)] = 6 + 0 = 6 M31 = [■8(1&1@−2&−1)] = –1 + 2 = 1 M32 = [■8(2&1@1&−1)] = –2 – 1 = –3 M33 = [■8(2&1@1&−2)] = –4 – 1 = –5 Now, A11 = (–1)1+1 . M11 = (–1)2 . (13) = 13 A12 = (–1)1+2 . M12 = (–1)3 . (–5) = 5 A13 = (–1)1+3 . M13 = (–1)4 . (3) = 3 A21 = (–1)2+1 . M21 = (–1)3 . (–8) = 8 A22 = (–1)2+2 . M22 = (–1)4 . (–10) = –10 A23 = (–1)2+3 . M23 = (–1)5 . (6) = – 6 A31 = (–1)3+1 . M31 = (–1)4 . (1) = 1 A32 = (–1)3+2 . M32 = (–1)5 . (–3) = 3 A33 = (–1)3+3 . M33 = (–1)6 . (–5) = – 5 Thus, adj (A) =[■8(13&8&1@5&−10&3@3&−6&−5)] Now, A-1 = 1/(|A|) adj A Putting values = 1/34 [■8(13&8&1@5&−10&3@3&−6&−5)] Also, X = A-1 B Putting values [█(■8(𝑥@𝑦)@𝑧)] = 1/34 [■8(13&8&1@5&−10&3@3&−6&−5)][█(■8(1@3/2)@9)] [█(■8(𝑥@𝑦)@𝑧)] = 1/34 [■8(13(1)+8(3/2)+1(9)@5(1)+(−10)(3/2)+3(9)@3(1)+(−6)(3/2)+(−5)(9) )] [█(■8(𝑥@𝑦)@𝑧)] = 1/34 [■8(13+12+9@5−15+27@3−9−45)] = 1/34 [█(■8(34@17)@−51)] [█(■8(𝑥@𝑦)@𝑧)] = [█(■8(1@1/2)@(−3)/2)] Hence x = 1, y = 𝟏/𝟐 & z = (−𝟑)/𝟐

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo