Ex 4.4, 16 - Chapter 4 Class 12 Determinants
Last updated at Dec. 16, 2024 by Teachoo
Finding inverse when Equation of matrice given
Finding inverse when Equation of matrice given
Last updated at Dec. 16, 2024 by Teachoo
Ex 4.4, 16 If A = [■8(2&−1&1@−1&2&−1@1&−1&2)] verify that A3 − 6A2 + 9A − 4I = O and hence find A−1 Calculating A2 A2 = A.A = [■8(2&−1&1@−1&2&−1@1&−1&2)] [■8(2&−1&1@−1&2&−1@1&−1&2)] =[■8(2(2)+(−1)(−1)+1(1)&2(−1)+(−1)(2)+1(−1)&2(1)+(−1)(−1)+1(2)@−1(2)+2(−1)+(−1)(1)&−1(−1)+2(2)+(−1)(−1)&−1(1)+2(−1)+(−1)(2)@1(2)+(−1)(−1)+2(1)&1(−1)+(−1)(2)+2(−1)&1(1)+(−1)(−1)+2(2))] = [■8(4+1+1&−2−2−1&2+1+2@−2−2−1&1+4+1&−1−2−2@2+1+2&−1−2−2&1+1+4)] = [■8(6&−5&5@−5&6&−5@5&−5&6)] Calculating A3 A3 = A2 . A = [■8(6&−5&5@−5&6&−5@5&−5&6)] [■8(2&−1&1@−1&2&−1@1&−1&2)] = [■8(6(2)+(−5)(−1)+5(1)&6(−1)+(−5)(2)+5(−1)&6(1)+(−5)(−1)+5(2)@−5(2)+6(−1)+(−5)(1)&−5(−1)+6(2)+(−5)(−1)&−5(1)+6(−1)+(−5)(2)@5(2)+(−5)(−1)+6(1)&5(−1)+(−5)(2)+6(−1)&5(1)+(−5)(−1)+6(2))] =[■8(12+5+5&−6−10−5&6+5+10@−10−6−5&5+12+5&−5−6−10@10+5+6&−5−10−6&5+5+12)] = [■8(22&−21&21@−21&22&−21@21&−21&22)] Now, putting values in A3 – 6A2 +9A – 4I = [■8(22&−21&21@−21&22&−22@21&−21&22)] – 6[■8(6&−5&5@−5&6&−5@5&−5&6)] + 9 [■8(2&−1&1@−1&2&−1@1&−1&2)] – 4 [■8(1&0&0@0&1&0@0&0&1)] = [■8(22&−21&21@−21&22&−22@21&−21&22)] – [■8(6(6)&6(−5)&6(5)@6(−5)&6(6)&6(−5)@6(5)&6(−5)&6(6))] + [■8(9(2)&9(−1)&9(1)@9(−1)&9(2)&9(−1)@9(1)&9(−1)&9(2))] – [■8(4(1)&0&0@0&4(1)&0@0&0&4(1))] =[■8(22&−21&21@−21&22&−22@21&−21&22)] – [■8(36&−30&30@−30&36&−30@30&−30&30)] + [■8(18&−9&9@−9&18&−9@9&−9&18)] – [■8(4&0&0@0&4&0@0&0&4)] = [■8(22−36+18+4&−21−(−30)+(−9)+0&21−30+9+0@−21−(−30)+(−9)60&22−36+18+4&−22−(−30)+(−9)+0@21−30+9+0&−21−(−30)+(−9)+0&22−36+18+4)] = [■8(36−36&−21+30−9&30−30@−21+30−9&36−36&−21+30−9@30−30&−21+30−9&36−36)] = [■8(0&0&0@0&0&0@0&0&0)] = O Hence proved Now calculating A-1 using A3 – 6A2 + 9A – 4I = 0 Post multiplying by A-1 both side (A3 – 6A2 + 9A – 4I ) A-1 = 0.A-1 A3 . A-1 – 6A2 . A + 9AA-1 – 4IA-1 = 0 A2 . AA-1 – 6A. A-1 A + 9AA-1 – 4IA-1 = 0 A2 I – 6AI + 9I – 4IA-1 = 0 A2 – 6A + 9I – 4A-1 = 0 4A-1 = A2 – 6A + 9I A-1 = 1/4 (A2 – 6A + 9I) Putting value A-1 = 1/4 ([■8(6&−5&5@−5&6&−5@5&−5&6)]" − 6 " [■8(2&−1&1@−1&2&−1@1&−1&2)]" + 9 " [■8(1&0&0@0&1&0@0&0&1)]) = 1/4 ([■8(6&−5&5@−5&6&−5@5&−5&6)]" − " [■8((6)2&6(−1)&6(1)@(6)(−1)&6(2)&6(−1)@6(1)&6(−1)&6(2))]"+ " [■8(9(1)&0&0@0&9(1)&0@0&0&9(1))]) = 1/4 ([■8(6&−5&5@−5&6&−5@5&−5&6)]" − " [■8(12&−6&6@−6&12&−6@6&−6&12)]" + " [■8(9&0&0@0&9&0@0&0&9)]) = 1/4 ([■8(6−12+9&−5+6+0&5−6+0@−5+6+0&6−12+9&−5+6+0@5−6+0&−5+6+0&6−12+9)]" " ) = 1/4 [■8(3&1&−1@1&3&1@−1&1&3)] Hence, A – 1 = 𝟏/𝟒 [■8(𝟑&𝟏&−𝟏@𝟏&𝟑&𝟏@−𝟏&𝟏&𝟑)]