Ex 4.4, 2 - Chapter 4 Class 12 Determinants
Last updated at April 16, 2024 by Teachoo
Ex 4.4
Ex 4.4, 2 You are here
Ex 4.4, 3 Important
Ex 4.4, 4 Important
Ex 4.4, 5
Ex 4.4, 6 Important
Ex 4.4, 7
Ex 4.4, 8
Ex 4.4, 9
Ex 4.4, 10 Important
Ex 4.4, 11 Important
Ex 4.4, 12
Ex 4.4, 13
Ex 4.4, 14 Important
Ex 4.4, 15 Important
Ex 4.4, 16
Ex 4.4, 17 (MCQ) Important
Ex 4.4, 18 (MCQ) Important
Last updated at April 16, 2024 by Teachoo
Ex 4.4, 2 Find adjoint of each of the matrices. [■8(1&−1&2@2&3&5@−2&0&1)] Let A = [■8(1&−1&2@2&3&5@−2&0&1)] adj A = [■8(A11&A21&A31@A12&A22&A32@A13&A23&A33)] Step 1: Cacluating minors M11 = |■8(3&5@0&1)|= 3(1) – 0(5) = 3 – 0 = 3 M12 = |■8(2&5@−2&1)| = 2 – ( –10) = 2 + 10 = 12 M13 = |■8(2&3@−2&0)| = 0 – ( – 6) = 0 + 6 = 6 M21 = |■8(−1&2@0&1)| = − 1 – (0) = – 1 + 0 = – 1 M22 = |■8(1&2@−2&1)| = 1 – (-2)2 = 1 + 4 = 5 M23 = |■8(1&−1@−2&0)| = 0 – ( – 2) ( – 1) = 0 – (2) = – 2 M31 = |■8(−1&2@3&5)| = 5 ( – 1) – 6 = – 5 – 6 = – 11 M32 = |■8(1&2@2&5)| = 5 – 4 = 1 M33 = |■8(1&−1@2&3)| = 3 – ( – 2) = 3 + 2 = 5 Step 2: Calculating adjoint A11 = 〖"( –1)" 〗^(1+1) . M11 = ( –1)2 . 3 = 3 A12 = 〖"( –1)" 〗^"1+2" . M12 = 〖"( –1)" 〗^"3" . (12) = – 1 (12) = – 12 A13 = 〖( −1)〗^(1+3) . M13 = 〖( −1)〗^4 . ( 6) = 1(6) = 6 A21 = 〖( −1)〗^(2+1) . M21 = 〖( −1)〗^3 . (-1) = -1(-1) = 1 A22 = 〖( −1)〗^(2+2) . M22 = 〖( −1)〗^4 . (5)= 1(5) = 5 A23 = 〖(−1)〗^(2+3). M23 = 〖(−1)〗^5. ( –2) = –1 (–2) = 2 A31 = 〖(−1)〗^(3+1). M31 = 〖(−1)〗^4 . ( –11) = 1 (– 11) = – 11 A32 = 〖(−1)〗^(3+2) . M32 = 〖(−1)〗^5. (1) = ( –1) (1) = –1 A33 = 〖(−1)〗^(3+3) . M33 = ( –1)6 . ( 5) = 1 (5) = 5 Step 3: Calculating adjoint Hence, adj A = [■8(A11&A21&A31@A12&A22&A32@A13&A23&A33)] = [■8(3&1&−11@−12&5&−1@6&2&5)]