Slide11.JPG

Slide12.JPG
Slide13.JPG

Go Ad-free

Transcript

Ex 4.3, 4 Using Cofactors of elements of third column, evaluate ∆ = |■8(1&x&yz@1&y&zx@1&z&xy)| ∆ = |■8(1&x&yz@1&y&zx@1&z&xy)| ∆ = a13 A13 + a23 A23 + a33 A33 a13 = yz , a23 = zx , a33 = xy , Calculating cofactors of third column i.e. A13 , A23 , And A33 M13 = |■8(1&x&yz@1&y&zx@1&z&xy)| = |■8(1&y@1&𝑧)| = 1 × z – 1 × y = z – y M23 = |■8(1&x&yz@1&y&zx@1&z&xy)| = |■8(1&x@1&z)| = 1 × z – 1 × x = z – x M33 = |■8(1&x&yz@1&y&zx@1&z&xy)| = |■8(1&x@1&𝑦)| = 1 × y – 1 × x = y – x A13 = (–1)1+3 M13 = (–1)4 . (z – y) = z – y A23 = (–1)2+3 . M23 = (–1)5 . (z – x) = (–1) (z – x) = x – z A33 = (–1)3 + 3 . M33 = (–1)6 . M33 = 1 . (y – x) = y – x Now, ∆ = a13 A13 + a23 A23 + a33 A33 = yz (z – y) + zx (x – z) + xy (y – x) = yz2 – y2z + zx2 – z2x + xy2 – x2y = (yz2 – y2z) + (xy2 – z2x) + (zx2 – x2y) = yz (z – y) + x (y2 – z2) + x2 (z – y) = – yz (y – z) + x (y2 – z2) – x2 (y – z) = – yz (y – z) + x (y + z) (y – z) – x2 (y – z) = (y – z) (−𝑦𝑧+𝑥(𝑦+𝑧)−𝑥2) = (y – z) (−𝑦𝑧+𝑥𝑦+𝑥𝑧−𝑥2) = (y – z) (𝑧(𝑥−𝑦)+𝑥(𝑦−𝑥)) = (y – z)(𝑧(𝑥−𝑦)−𝑥(𝑥−𝑦)) = (y – z)((𝑧−𝑥) (𝑥−𝑦)) = (x – y) (y – z) (z – x)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo