Ex 4.2, 2 - Chapter 4 Class 12 Determinants (Important Question)
Last updated at Dec. 16, 2024 by Teachoo
Chapter 4 Class 12 Determinants
Question 9 Important
Question 10 Important
Question 11 Important
Question 7 Important
Question 8 (i) Important
Question 11 (i)
Question 12 Important
Question 13 Important
Question 14 Important
Question 15 (MCQ) Important
Example 7 Important
Ex 4.2, 2 Important You are here
Ex 4.2, 3 (i) Important
Example 13 Important
Example 15 Important
Ex 4.4, 10 Important
Ex 4.4, 15 Important
Ex 4.4, 18 (MCQ) Important
Ex 4.5, 13 Important
Ex 4.5, 15 Important
Ex 4.5, 16 Important
Question 14 Important
Question 15 Important
Question 1 Important
Question 5 Important
Question 9 Important
Misc 7 Important
Misc 9 (MCQ) Important
Chapter 4 Class 12 Determinants
Last updated at Dec. 16, 2024 by Teachoo
Ex 4.2, 2 (Introduction) Show that points A (a , b + c), B (b,c + a), C (c,a + b) are collinear 3 points collinear Area of triangle = 0 Area of triangle ≠ 0 Ex 4.2, 2 Show that points A (a , b + c), B (b, c + a), C (c,a + b) are collinear Three point are collinear if they lie on some line 𝑖.𝑒. They do not form a triangle ∴ Area of triangle = 0 We know that Area of triangle is given by ∆ = 1/2 |■8(x1&y1&1@x2&y2&1@x3&y3&1)| Here, x1 = a, y1 = b + c, x2 = b, y2 = c + a, x3 = c , y3 = a + b Putting values ∆ = 1/2 |■8(a&b+c&1@b&c+a&1@c&a+b&1)| Applying C1 → C1 + C2 ∆ = 1/2 |■8(a+b+c&b+c&1@b+c+a&c+a&1@c+a+b&a+b&1)| Taking (a + b + c) common from C1 ∆ = 1/2 (a + b + c) |■8(1&b+c&1@1&c+a&1@1&a+b&1)| Here, 1st and 3rd Column are Identical Hence value of determinant is zero ∆ = 1/2 (a + b + c) × 0 ∆ = 0 So, ∆ = 0 Hence points A, B & C are collinear