Ex 4.2, 13 - Using properties of determinants - Class 12

Ex 4.2, 13 - Chapter 4 Class 12 Determinants - Part 2
Ex 4.2, 13 - Chapter 4 Class 12 Determinants - Part 3
Ex 4.2, 13 - Chapter 4 Class 12 Determinants - Part 4

Go Ad-free

Transcript

Question 13 By using properties of determinants, show that: |■8(1+a2−b2&2ab&−2b@2ab&1−a2+b2&2a@2b&−2a&1−a2−b2)| = (1 + a2+b2)3 Solving L.H.S |■8(1+a2−b2&2ab&−2b@2ab&1−a2+b2&2a@2b&−2a&1−a2−b2)| Applying R1 → R1 + bR3 = |■8(1+a2−b2+𝑏(2𝑏)&2ab+b(−2a)&−2b+𝑏(1−𝑎2−𝑏2)@2ab&1−a2−b2&2a@2b&−2a&1−a2−b2)| = |■8(1+a2−b2+2𝑏^2&2ab−2ab&−2b+𝑏−𝑏𝑎^2−𝑏^3@2ab&1−a2−b2&2a@2b&−2a&1−a2−b2)| = |■8(𝟏+𝐚𝟐+𝐛𝟐&0&−𝑏(𝟏+𝐚𝟐+𝐛𝟐)@2ab&1−a2+b2&2a@2b&−2a&1−a2−b2)| Taking Common (1+𝑎2+𝑏2) from R1 = (1+𝑎2+𝑏2) |■8(1&0&−b@2ab&1−a2+b2&2a@2b&−2a&1−a2−b2)| Applying R2 → R2 − aR3 = (1+𝑎2+𝑏2) |■8(1&0&−b@2ab−𝑎(2𝑏)&1−a2+b2−𝑎(−2𝑎) &2a−a(1−a2−b2) @2b&−2a&1−a2−b2)| = (1+𝑎2+𝑏2) |■8(1&0&−b@2ab−2𝑎𝑏&1−a2+b2+2𝑎2&2a−a+a3+ab2@2b&−2a&1−a2−b2)| = (1+𝑎2+𝑏2) |■8(1&0&−b@0&1+b2+𝑎2&a+a3+ab2@2b&−2a&1−a2−b2)| = (1+𝑎2+𝑏2) |■8(1&0&−b@0&𝟏+𝒂𝟐+𝒃𝟐&a(𝟏+𝐚𝟐+𝒃𝟐) @2b&−2a&1−a2−b2)| Taking Common (1+𝑎2+𝑏2) from R2 = (1+𝑎2+𝑏2)2 |■8(1&0&−b@0&1&a@2b&−2a&1−a2−b2)| = (1+𝑎2+𝑏2)2 ( 1|■8(1&𝑎@−2𝑎&1−a2−b2)|−0|■8(0&x@−2𝑎&1−a2−b2)|−𝑏|■8(0&1@2b&−2𝑏)|) = (1+𝑎2+𝑏2)2 ( 1|■8(1&𝑎@−2𝑎&1−a2−b2)|−0−𝑏|■8(0&1@2b&−2𝑏)|) = (1+𝑎2+𝑏2)2 (1(1 – a2 – b2) + 2a2) – b (0 – 2b)) = (1+𝑎2+𝑏2)2 (1 – a2 – b2 + 2a2 + 2b2) = (1+𝑎2+𝑏2)2 (1 + a2 + b2) = (1+𝑎2+𝑏2)3 = R.H.S Hence proved

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo