Ex 4.2, 10 - Show: (i) |x+4 2x 2x 2x x+4 2x 2x 2x x+4| - Ex 4.2

Ex 4.2, 10 - Chapter 4 Class 12 Determinants - Part 2
Ex 4.2, 10 - Chapter 4 Class 12 Determinants - Part 3

 

Go Ad-free

Transcript

Question 10 By using properties of determinants, show that: (i) x+4 2x 2x 2x x+4 2x 2x 2 x+4 = (5x + 4) (4 x)2 Taking L.H.S x+4 2x 2x 2x x+4 2x 2x 2 x+4 Applying R1 R1 + R2 + R2 = x+4+2 +2 2x+x+4+2x 2x+2x+x+4 2x x+4 2x 2x 2 x+4 = + + + 2x x+4 2x 2x 2 x+4 Taking out (5x + 4) common from R1 = (5x + 4) 1 1 1 2x x+4 2x 2x 2 x+4 Applying C1 C1 C2 = (5x + 4) 1 1 1 1 2x x 4 x+4 2x 2x 2x 2 x+4 = (5x + 4) 1 1 x 4 x+4 2x 0 2 x+4 Applying C2 C2 C3 = (5x + 4) 0 1 x 4 x+4 2x 2x 0 2 4 x+4 = (5x + 4) 0 1 x 4 ( 4) 2x 0( 4) ( 4) x+4 Taking common (x 4) from C1 & C2 = (5x + 4) (x 4) (x 4) 0 0 1 1 1 2x 0 1 x+4 Expanding Determinant along R1 = (5x + 4) (x 4) (x 4) 0 1 2 1 +4 0 1 2 0 +4 +1 1 1 0 1 = (5x 4) (x 4)2 (0 0 + (1 0)) = (5x 4) (x 4)2 (1) = (5x 4) (x 4)2 = R.H.S Hence Proved

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo