Question 3 - Inverse of matrix using elementary transformation - Chapter 3 Class 12 Matrices
Last updated at Dec. 16, 2024 by Teachoo
Inverse of matrix using elementary transformation
Inverse of a matrix
Finding inverse of a matrix using Elementary Operations
Ex 3.4, 1 (MCQ)
Question 1
Question 1
Question 2
Question 3 You are here
Question 4
Question 5
Question 6
Question 7
Question 8 Important
Question 9
Question 10
Question 11
Question 13
Question 3 Important You are here
Question 12
Question 14
Question 2 Important
Question 15 Important
Question 16
Question 17 Important
Inverse of matrix using elementary transformation
Last updated at Dec. 16, 2024 by Teachoo
Question 3 Find P -1, if it exists, given P = [■8(10&−2@−5&1)] Given P = [■8(10&−2@−5&1)] We know that P = I P [■8(10&−2@−5&1)] = [■8(1&0@0&1)] P R1 →1/10 R1 [■8(𝟏𝟎/𝟏𝟎&(−2)/10@−5&1)]" = " [■8(1/10&0/10@0&1)]" P" [■8(𝟏&(−1)/5@−5&1)] = [■8(1/10&0@0&1)] P R2 →"R2" + 5R1 [■8(1&(−1)/5@−𝟓+𝟓(𝟏)&1+5((−1)/5) )]" = " [■8(1/10&0@0+5(1/10)&1+5(0))]" P" [■8(1&(−1)/5@−𝟓+𝟓&1−1)]" = " [■8(1/10&0@0+(1/2)&1+0)]" P" [■8(1&(−1)/5@𝟎&0)] = [■8(1/10&0@1/2&1)] P Since we have all zeros in the second row of the left hand side matrix of the above equation. Therefore, P–1 does not exist.